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Motivation

In physics many quantities of interest depend
upon more than one variable.

Example: the height of a wave z  on the ocean
depends upon the coordinates x  and y, and
also upon the time t.  We write

z x,y,t( )   i.e. z  is a function of x , y and t.

Example: The ideal gas law states that

p T,V( ) = nkT / V

p  is a function of T and V.



3

Coordinate Systems

Cartesian coordinates x, y, z( ) label a point P
in 3 dimensional space.

The distance of P from the origin

( ) ,2

1
222 zyxr ++=

is a function of x , y and z .
Other functions of x, y, z( ) are harder to
visualise.  The value of a function of two
variables, such as x  and y can be plotted
along the z  axis. For example

f (x, y) = sin xsin y
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Polar Coordinates in 2 Dimensions

x  and y are functions of ρ  and φ .

x = ρ cosφ ,  y = ρsin φ .

We can also write ρ  and φ  as functions of
x  and y,

( )2

1
22 yx +=ρ ,  φ = tan−1 y

x
.

Cylindrical Polar Coordinates

In 3D we use   ρ,φ ,z( )
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Spherical Polar Coordinates

x, y, z( ) are functions of r,θ,φ( )
x = rsinθ cosφ ,
y = rsin θ sin φ ,
z = rcosθ .

Or we could write r,θ,φ( ) as functions of
x, y, z( )

( )2
1

222 zyxr ++= ,

φ = tan−1 y
x

,
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In general we will choose the coordinate
system that is most convenient for a given
problem.
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Direction Cosines

One other way of labelling the position in
3 dimensions:

r,α ,β , γ  are used to specify the position.

The cosines of the angles α ,β , γ  are
known as the direction cosines.
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Differentiation

The derivative of y = f (x) at a point x  is the
slope of the tangent to the curve at that point.

dy
dx

= lim
∆x→0

∆y

∆x

= lim
h→0

f x + h( ) − f x( )
h

= ′ f x( )
where

∆x = h,

∆y = f x + ∆x( ) − f x( ) = f x + h( ) − f x( )

Notice that
dx
dy

= 1
dy
dx
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The differential  dy is given by

dy = dy
dx

dx = ′ f x( )dx

Example: Show that the derivative of
y = xn is nxn−1
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Partial Differentiation

The partial derivatives of f (x, y) with
respect to x  and y are defined by

∂f
∂x

= lim
h→0

f x + h,y( )− f x, y( )
h

,

∂f

∂y
= lim

k→0

f x,y + k( )− f x, y( )
k

.

These are tangents to cross-sections
through the surface z = f (x,y).

Consider 
∂f
∂x

 at x = a  when y = b :
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Notation

 ∂  is used instead of d  in partial
derivatives

∂f
∂x

 may also be written as f x  or 
∂f
∂x

 
 

 
 y

.

In the latter case the subscript y indicates
that y is held constant while f (x, y) is
differentiated with respect to x .

Example: Find the partial derivatives with
respect to x  and y of

f (x, y) = xy2 + 3x + 2y + 4ysin x
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Warning!

We must pay attention to which variables
are being kept constant.

Example: If x = ρ cosφ  and y = ρsin φ ,

then does 
∂ρ
∂x

= 1
∂x

∂ρ

 ?
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The Differential

Consider how the value of f (x, y) changes
on moving from x, y( ) to x + ∆x, y + ∆y( ).
The change in f  may be written as
∆f = f x + ∆x, y + ∆y( )− f x,y( )

= f x + ∆x, y + ∆y( )− f x,y + ∆y( )
+ f x,y + ∆y( )− f x,y( )

( ) ( )

( ) ( )
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for small ∆x , ∆y,

≈ ∂f x,y + ∆y( )
∂x

∆x + ∂f x,y( )
∂y

∆y

( ) ( ) ( )
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yxf
xy
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yxf ∆+∆
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∂
∂

∂
∂

∂
∂

∂
∂ ,,,

≈ ∂f x,y( )
∂x

∆x + ∂f x, y( )
∂y

∆y

So the differential may be written as

dy
y

f
dx

x

f
df

xy






+





=

∂
∂

∂
∂
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The Reciprocal and Reciprocity
Theorems

Suppose that x,y,z  are related to each other so
that there are only 2 independent variables e.g.
a surface in 3D space.  We could write z x,y( )
or x y, z( ) and then

dz
z

x
dy

y

x
dx

yz






+





=

∂
∂

∂
∂

dy
y

z
dx

x

z
dz

xy






+





=

∂
∂

∂
∂

.

Substituting one into the other,

dy
y

z

z

x

y

x

dx
x

z

z

x
dx

xyz

yy























+





+












=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

But if x  and y are the independent variables
then the coefficients of dx  and dy must be
equal to zero, and so from the coefficient of
dx  we obtain:

y

y

x

zz

x








=






∂
∂∂

∂ 1

(The Reciprocal Theorem)
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Applying the Reciprocal Theorem to the
coefficient of dy we obtain:

1−=



















yxz
x

z

z

y

y

x

∂
∂

∂
∂

∂
∂

.

(The Reciprocity Theorem)



15

Partial and Total Derivatives
If x  and y are functions of a parameter t then
f (x, y) is implicitly a function of the single
parameter t. What is the rate of change of
f (x, y) with t?
df
dt 








∆+∆

∆
=

∆
∆=

→∆→∆
y

y

f
x

x

f

tt

f
tt ∂

∂
∂
∂1

limlim
00

so
df
dt 








∆
∆+

∆
∆=

→∆ t

y

y

f

t

x

x

f
t ∂

∂
∂
∂

0
lim

dt

dy

y

f

dt

dx

x

f

xy






+





=

∂
∂

∂
∂

df
dt

 is the total derivative of f  w.r.t. t.

If x  is in fact the parameter then
df
dx dx

dy

y

f

x

f

xy






+





=

∂
∂

∂
∂
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For a function f (x, y, z) where z  is a
function of x  and y we can write

yyxzyy x

z

z

f

x

f

x

f











+





=







∂
∂

∂
∂

∂
∂

∂
∂

,,

.

Notice that:
(i) we must use the subscripts
(ii) there are now no total derivatives
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Differentiating implicit functions

Let y be an implicit function of x .  For
example, consider

xy = sin x + y( ).
How do we find 

dy
dx

?  Let us write

f x,y( ) = xy − sin x + y( )= 0
Then

dx

dy

y

f

x

f

dx

df

xy






+





==

∂
∂

∂
∂

0

y

x

x

y

f

f

y

f

x

f

dx

dy −=















−=

∂
∂
∂
∂

which for our example gives
dy
dx

= − y − cos x + y( )
x − cos x + y( )
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Higher order partial derivatives

Second and higher order partial derivatives
may be defined simply by differentiating
the first derivatives again, so that

xx
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f
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
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
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∂
∂

∂
∂

∂∂
∂ 2

.

The variables being held constant can be
written as subscripts but this soon
becomes cumbersome and often they are
omitted.

For most functions that we will meet it can
be shown that

∂ 2 f

∂x∂y
= ∂ 2 f

∂y∂x
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in which case the differential

dy
y

f
dx

x

f
df

xy






+





=

∂
∂

∂
∂

is exact  i.e. the change in the value of f  is
independent of the path taken when
moving between two points with different
coordinates.

The work done by a force may be written
as

dW = F ⋅ dr = Fxdx + Fydy

where the subscripts now refer to the
component of the vector F.

This differential would be exact if x, y( )
were the coordinates of a charge in an
electric field.  The same would not be true
if x, y( ) were the coordinates of a ball
bearing in a jar of treacle.  Forces that lead
to exact differentials are said to be
conservative.
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The second derivative of an implicit
function

How do we calculate 
d2y
dx2  when y is an

implicit function of x?

Again we write an equation of the form
f x,y( ) = 0.

Then by repeated application of the
operator used to calculate the first
derivative
























+





=





=

dx

dy

dx

dy

yxdx

dy

dx

d

dx

yd

xy ∂
∂

∂
∂

2

2

and substituting the previous expression

that we found before for 
dy

dx
,











−
















−





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y

x

xy

x

y f

f

yf

f

xdx

yd

∂
∂

∂
∂

2

2

d2y
dx2 = − f xx

f y

+
f x f xy

f y
2 − f x

f y

−
f yx

f y

+
f x f yy

f y
2

 

 
 

 

 
 

d2y
dx2 = −

f x
2 f yy − 2 f x f y f xy + f y

2 f xx

f y
3
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Example:   compute 
d2y
dx2  for the case that

x2 + y2 = a2
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The Chain Rule

If f  is a function of a variable u and u is a
function x  then we may differentiate f
with respect to x  by the Chain Rule

df
dx

= df
du

du
dx

There is also a Chain Rule for functions of
more than one variable.

If f  is a function of u,v( ) which are
functions of x, y( ) then

yuyvy x

v

v

f

x

u

u

f

x

f











+











=







∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

,

xuxvx
y

v

v

f

y

u

u

f

y

f











+










=





∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

note which variables are being kept
constant!

Example: If f = xy calculate the partial
derivatives with respect to the polar
coordinates ρ  and φ , by the chain rule and
explicitly by substitution.
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We will often be concerned with the form
of differential operators in different
coordinate systems.

Example: Transform the operator
∂2

∂x2 + ∂ 2

∂y2
 
 
  

 
  into polar coordinates.


