Example Solutions

Example: show that the derivative of y=x"
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Using the definition of the derivative,
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Example: If x=pcosp and y = psing,
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Differentiating,
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But, different variables were kept constant
during the differentiation! We have
actually shown that
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Example: If f =xy calculate the partial

derivatives with respect to the polar
coordinates p and @, by the chain rule and

explicitly by substitution.
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Exampl e' Transform the operator
2
d dyz 9°F into polar coordinates.

We begin by evaluating the first

derivatives by means of the chain rule.
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and then applying the operators to
themselves
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