1 Functions of a Complex Variable

- **1.1** If $z_1 = 3 + 2i$ and $z_2 = -1 + i$, find $z_1 + z_2$, $z_1 z_2$, $z_1 z_2$ and z_1 / z_2 . Evaluate $z_1^* z_1$, $z_2^* z_2^* z_2^*$
- 1.2 Find the real and imaginary parts of
 - (a) (2+3i)/(3+2i),
 - (b) $\ln(\sqrt{3} + i)/2$,
 - (c) $(1+i)^{iy}$,
 - (d) $1/i^5$,
 - (e) $(-1/2 + i\sqrt{3}/2)^2$.
- **1.3** Express each of the following functions in the form f(z) = U(x, y) + iV(x, y), where U(x, y) + iV(x, y) are real:

1

- (a) $f(z) = z^3$,
- (b) $f(z) = \exp(-z)$,
- (c) f(z) = 1/(1-z),
- (d) $f(z) = \ln z$,
- (e) $f(z) = \tan z$.

- **1.4** Use Cauchy-Riemann equations to find out which of the following functions are analytic:
 - (a) $f(z) = z^2$,
 - (b) $f(z) = \exp(3z)$,
 - (c) $f(z) = \left(z^*\right)^2$,
 - (d) $f(z) = |z^2|$,
 - (e) $f(z) = \cos(z)$.
- **1.5** Find the constant λ , such that the function $U(x,y) = \exp(\lambda x)\cos y$ is the real part of the analytic function f(z) = U(x,y) + iv(x,y). Find the corresponding imaginary part V.
- **1.6** Evaluate $\int_0^{1+i} z^2 dz$
 - (a) along the parabola x = t, $y = t^2$ where $0 \le t \le 1$,
 - (b) along the straight line joining 0 and 1+i.

1.7 Prove that
$$\oint_C \frac{\mathrm{d} z}{(z-a)^n} = \begin{cases} 2\pi i & \text{if } n=1\\ 0 & \text{if } n=2, 3, 4, \dots \end{cases}$$

where C is a simple closed curve bounding a region having z = a as interior point. What is the value of the integral if n = 0,-1,-2,-3,...?

- **1.8** Evaluate $\oint_C \frac{\mathrm{d} z}{z-2}$ where C is
 - (a) the circle |z|=1,
 - (b) the circle |z+3i|=5.
- 1.9 Evaluate

(a)
$$\oint_C \frac{\sin(z/2)}{z-\pi} dz$$
, (b) $\oint_C \frac{\exp(2z)}{z(z+1)} dz$

where C is the circle |z-1|=4.

1.10 Evaluate $\oint_C \frac{3z^2 - 17z + 5}{(z-1)^3} dz$ where C is any simple closed curve enclosing z=1.

1.11 Evaluate
$$\int_{0}^{\infty} \frac{dx}{x^4 + 1}$$
.

1.12 Show that
$$\int_{0}^{\infty} \frac{dx}{(x^2+1)^2} = \frac{\pi}{4}.$$

1.13 Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos\theta}.$$

1.14 Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{5 + 3\sin\theta}.$$

1.15 Show that
$$\int_{-\infty}^{\infty} \frac{e^{i\omega t} dt}{t^2 + \tau^2} = \frac{\pi}{\tau} e^{-\omega \tau}.$$

1.16 Show that
$$\int_{0}^{\infty} \frac{\cos mx \, dx}{x^2 + 1^2} = \frac{\pi}{2} e^{-m}, \ m > 0.$$

1.17 Show that
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

1.18 Evaluate
$$\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx.$$

1.19 Show that
$$\int_{0}^{\infty} \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin p\pi}$$
, $0 .$

1.20 Prove that
$$\int_{0}^{\infty} \frac{\cosh ax}{\cosh x} \, dx = \frac{\pi}{2\cos(\pi a/2)},$$
 where $|a| < 1$.

1.21 Show that
$$\int_{0}^{\infty} \sin x^{2} dx = \int_{0}^{\infty} \cos x^{2} dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$$
.