Functions of a Complex Variable

FUNCTIONS

If to each of a set of complex numbers
which a variable z may assume there
corresponds one or more values of a variable
w, then w is called a function of the
complex variable z, written w = f(2).

A function Is single-valued if for each
value of z there is only one value of w;
otherwise it is multiple-valued or many-
valued. In general we can write w=1f(2) =

X, V) + ivix,y), where u and v are real
functions of x and y.

Example 1.
w =72 =(x + iy)? = x° = y? + 2ixy so that

ux,y) = x% =y, V(X,y) = 2xy . These are

called real and imaginary parts of w = 7°

respectively.

Unless otherwise specified we shall
assume that f(2) is single-valued. A function,
which i1s multiple-valued, can be considered
as a collection of single-valued functions.



LIMITSAND CONTINUITY

Definitions of limits and continuity for
functions of a complex variable are similar to
those for a real variable. Thus, f(z) is said to
have the limit | as z approaches z;,, If given

any € >0, there exist a 0 >0, such that
f(2) -1/ <& whenever 0 <|z - zy| < 6.

Similarly, f(2) is said to be continuous at
zy If, given any € >0, there exist a 0> 0,
such that |f(2)-f(zy) <€ when |z -2z, <.
Alternatively, f(z) is continuous at 2z, Iif
im f(2) = f(zp).

Z—>Zo
Theoremson limits
If Iim f(2)=Aand Im gz) =B, then

1. Im{f@+g2)}=A+8B
2. im{f@)- gz} =A-B
Z - 2,
3. Im{fxg2)} = AB
Z - 2,

4. lim{fz)/ gz} = A/Bif B#0

Z - Zg



DERIVATIVES

If f(2) is single-valued in some region of
the z plane the derivative of f(z), denoted
by f'(2), is defined as
. f(z+Az)-f(2)

| 1
Az -0 IAVA (1)

provided the limit exists independent of the
manner in which Az - 0. If this limit exists
for z = zy, then f(2) is called analytic at z,. If
the limit (1) exists for all z in a region R, then
f(2) is called analytic in R In order to be

analytic f(z) must be single-valued and
continuous. The converse, however, is not
necessarily true.




We define elementary functions of a
complex variable by a natural extension of
the corresponding functions of a real
variable. Where series expansions for real
functions f(x) exist, we can use as definitions
the series with x replaced by z.

Example 2: We define
2 3
&F=1+z+% +% +...
2 3

. z2 72 Zf
sSiN(z)=z—-—+———+--

3 9 7

2 4 6
cos@=1-2 +% -2 4.

2 4 6

Erom these we can show that €% = &V =

e*(cosy + isin y), as well as many other
relations.



Example 3:

We define o as é”"%even when cand b

are complex numbers. Since A= 1, it

follows that €® = &@"?K0 and we define
nz =Infpe®)=Inp + iGp+ 2km.

Thus InZ is a many-valued function. The

various single-valued functions of which this

many-valued function is composed are called
Its branches.

Rules for differentiating functions of a

complex variable are much the same as for
those of real variables. Thus

etc.

%(z”): nz" ™,
d(z)_
cl)=e

d (in ) =
—(sinz) = cosz,
dz

d .
—(cosz) = -sin z,
dz



CAUCHY-RIEMANN EQUATIONS

A necessary condition, that w =f(2) =
WX, y)+ iv(x,y) be analytic in a region R is
that u and v satisfy the Cauchy-Riemann
equations

gu:av’ a_u:—a_v_ (2)

X oy oy 0X
This condition is easy to prove first choosing
Ay =0 (thus Az = Ax), then choosing Ax =0
(thus Az = iAy), and finally equating the
expressions for the derivatives of f(2)
obtained in these two cases. If the partial
derivatives In (2) are continuous Iin R, the
equations are sufficient conditions that f(z)
be analytic in R.

If the second derivatives of u and v with
respect to x and y exist and are continuous,
we find by differentiating (2) that

0°u . 0°u 0%V . 0°v

x> 9y x> 9y
Thus u and v satisfy Laplace’s equation in 2
dimensions. Functions satisfying Laplace’s
equation are called harmonic functions.

0. (3)



INTEGRALS

If f(2) is single-valued and continuous in
a region R we define the integral of f(2)
along some path C in R from point z; to point
Z,, Where z; = Xy + 1yq, Z, =X, + 1y, as

[of@xiz = 22U+ MO+ i) =

(X +1

(Xo+iy5) (Xo+iy5)
- +
JEX1+/)/1) Uo — vay + J£X1+’)/1) v+ Uy (4)

with this definition the integral of a function of
a complex variable can be made to depend
on line integrals for real functions already
considered in Math-2 (see, e.g. Chapter 6 of
Spiegel’'s textbook). An alternative definition
based on the limit of a sum, as for functions
of a real variable, can also be formulated and
turns out to be equivalent to the one above.

The rules for complex integration are
similar to those for real Integrals. An
Important result is

[fF < [ [f@)c] < M[_ds = ML.

Here M is the upper bound of [f(z) on C, i.e.
f(2) < M, and L is the length of the path C.
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CAUCHY'STHEOREM

Let C be a simple closed curve. If f(2) is
analytic within the region bounded by C as
well as on C, then we have Cauchy'’s
theorem that

[f@dz = [ D)z =0, (5)

where the second integral emphasises the
fact that C is a simple closed curve.
Expressed in another way, equation (5) Is

equivalent to the statement that IZZ “f(2)dz
1

has a value indepe ndent of the path joining
z; and z,. Such integrals can be evaluated
as F(z,)— F(z) where F'(z) = f(2).

The proof of Cauchy’s theorem follows
iImmediately from Eq. (4), Cauchy-Riemann
equations (3) and Green’s theorem In the
plane (see Math-2 or Chapter 6 of Spiegel):

f(de+€2dy):ﬂ’Ep@ P Hixay.

[0x 0y [
Example 4: Since f(2) = z is analytic everywhere

+i 2 1+i
f zdz = 0. Also, J’l zdz—
C 2

=1+2

2 2
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CAUCHY'SINTEGRAL FORMULAS

If 7(2) is analytic within and on a simple
closed curve C and a is any point interior to
C, then

1
@= itz -a® ©

where C is traversed in the positive (counter-
clockwise) sense.

Also, the nth derivative of f(2) at z=cC is
given by

(@) =

n f(2)
211 Jo (z - )™t & (7)

Equations (6) and (7) are called
Cauchy’s integral formulas. They are quite
remarkable because they show that if the
function f(z) is known on the closed curve C
then it is also known within C, and the
various derivatives at points within C can be
calculated. Thus if a function of a complex
variable has a first derivative, it has all higher
derivatives as well. This of course is not
necessarily true for functions of real
variables.



TAYLOR'S ERIES

Let f(z) be analytic inside and on a circle

having its centre at z=a. Then for all points
z In the circle we have the Taylor series
representation of f(z) given by

f I

[(2)= @)+ '@z-a)+ D (z-a) +-- (8)

2

SINGULAR POINTS

A singular point of a function f(z) is a
value of z at which f (z) fails to be analytic. If
f(z) is analytic everywhere in some region

except at interior except at an interior point
z=a, we call z=a anisolated singularity of

f(2).

Example 5. If f(2) = 1 3 then z=5is an
(z-9)
isolated singularity of f (2).
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POLES

it f()= %D a) 20, where ®(2) is
(z-a)"

analytic everywhere in the region including

z=a, and if n is a positive integer, then f(z)

has an isolated singularity at z=a which is

called a pole of order n. If n=1, the pole is

often called a simple pole; if n=2 it is called

a double pole, etc.

23

(2-5)*(z+2)

has two singularities: a pole of the order 2 or
double pole at z=35, and a pole of order 1 or
simple pole at z=-2.

Example 6: f(z) =

A function can have other types of
singularities besides poles. For example
f(z2)=+/z has a branch point at z=0. The

function f(z) = N2 has a singularity at z=0.
Z

. . S\nz . .. .
However, since Iim—— is finite, we call
z-0 Z

such a singularity removable singularity.
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LAURENT SERIES

If f(z) has a pole of order nat z=a but is
analytic at every other point inside and on a
circle C with centre at a, then (z—a)" f(2) is

analytic at all points inside and on C and has
a Taylor series about z=a so that

f(2)= A a_n+1_1+...+ﬂ+
(z-a)" (z-a)" £7a (9

tag+a(z-a)+ay(z—a)* +---

This is called a Laurent series for f(z). The
part a0+a1(z—a)+a2(z—a)2+--- Is called the
analytic part, while the remainder consisting

of inverse powers of z—a Is called the
principal part. More generally, we refer to

the series Zak(z—a)k as a Laurent series
k=—00

where the terms with k<O constitute the

principal part. A function which is analytic in

a region bounded by two concentric circles

having centre at z=a can always be

expanded in such a Laurent series.
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It Is possible to define various types of
singularities of a function f(z) from its
Laurent series. For example, when the
principal part of a Laurent series has a finite
number of terms and a_,#0 while a_, 4,
a_.,_o, ... are all zero, then z=a is a pole of

order n. If the principal part has infinitely
many terms, z=a is called an essential
singularity or sometimes a pole of infinite
order.

Example 7:

The function exp(l/z) = 1+1+i+ has

Z 2z
an essential singularity at z=0.
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RESIDUES

The coefficients in (9) can be obtained by
writing the coefficients for the Taylor series
corresponding to (z-a)" f (2). The coefficient
a_,, called the residue of f(z) at the pole

Z=a, Is of considerable importance. It can be
found from the formula

n-1
z;a(nll).ddz - t@) o)

where n is the order of the pole. For simple
poles the calculation of the residue is of
particular simplicity since it reduces to

aq=lim(z-a)f (2 (11)
Z-a
Example 8. If f(z2)= 1 , then z=0 Is a
z(z—2)2
simple pole, z=2 is a pole of order 2. Thus:

Residue at z=0is |im z[d 1 —1.

z-0 z(z- 2) 4

Residue at z=2 is

Im—%z 2% [ L =1
z-20z ] z(z 2’0 4

I:II:I
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RESIDUE THEOREM

If f(2) is analytic in a region R except for

a pole of order n at z=a and if C is any
simple closed curve in R containing z=a,

then f(z) has the form (9) (Laurent series).
Integrating (9), and using the fact that

dz [Prifn=1
ﬁ(z-a)” " ifn=234...
(see Problem 1.7), it follows that
fc f(z)dz=2m a4 (13)

l.e. the integral of f(z) around a closed path
enclosing a single pole of f(z) is 2m times
the residue at the pole.

More generally, we have the following
Theorem 1: If f(z) is analytic within and on
the boundary C of a region R except at a finite
number of poles a,b,c,... within R, having
residues a_4,b_q,C_4,... respectively, then

fcf(z)dz:ZTu' (ay+b +Cc+-) (14)

Cauchy’s theorem and integral formula are
special cases of this result, which we call the

residue theorem.

(12)
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EVALUATION OF DEFINITE INTEGRALS

The evaluation of various real definite
integrals can often be achieved by using the
residue theorem together with a suitable function
f(z) and a suitable path or contour C, the

choice of which may require great ingenuity. The
following types are most common in practice.

(00)

1. IF(X) dx, F(X) is an even function.
0

Consider _fCF(z)dz along a contour C

consisting of the line along the X axis from
— R to + R and the semi-circle above the X
axis having this line as diameter. Then let
R - oo,

2T
2. J'G(Sine,cose) db, G is a rational function
0

of SINB and coso.
-1 -1
. | B +
Let z=¢€"®. Then smE):Z 2_2 : COSG:Z £
|

and dz=ie"do or d®=dz/iz. The integral is
equivalent to _ch(Z) dz where C is the unit

circle with center at the origin.
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os(mx
3, J’F( WMy Eyis a
- BIntmx) O
rational function. |
Here we consider J’CF(Z) €™z where

C is the same contour as that in Type 1.

4. Miscellaneous integrals involving
particular contours. See Problems.

Useful property of contour integrals:
If [f(2) < /I;Z for z = R&°, where k >1 and

M are constants, then I_\I)im Ir foOaz =0

where I Is the semi-circular arc of radius
R above the x axis.

Proof:

By the result at the bottom of page 7, we
have

f O < [ f@dz < ymR= 17

I'\)k -1
since the length of arc L =T1iR. Then

Aiinw‘ I f(z)dz\ =0Oandso lim [ f(2)oz =0
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