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Core text: 
Statistical Physics  by 
F. Mandl, various editions
'University Physics' by Young&Freedman, 11th Ed. 
17. Temperature and Heat 
18. Thermal Properties of Matter 
19. The First Law of Thermodynamics 
20. The Second Law of Thermodynamics

Supplementary texts:
Introductory Statistical Mechanics by 
R. Bowley and M. Sánchez, various editions.

Heat and Thermodynamics by 
M. W. Zemansky & R. H. Dittman, various editions. 
also any other good textbook such as
Thermal Physics by 

P. C. Riedi, various editions. 

PHY2023 Thermal Physics    - Misha Portnoi Rm. 212

From “Statistical Mechanics  Made Simple”

by D. C. Mattis (World Scientific, 2010)  
Despite the lack of a reliable atomic theory of matter, the 
science of Thermodynamics flourished in the 19th century. 
Among the famous thinkers it attracted, one notes William 
Thomson (Lord Kelvin) after whom the temperature scale is 
named, and James Clerk Maxwell. The latter's many 
contributions include the "distribution function" and some 
very useful "differential relations" among thermodynamic 
quantities (as distinguished from his even more famous 
"equations" in electro-dynamics). The Maxwell relations set 
the stage for our present view of thermodynamics as a science
based on function theory while grounded in experimental 
observations.
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From “Statistical Mechanics Made Simple”

by D. C. Mattis (World Scientific, 2010)  
The kinetic theory of gases came to be the next conceptual step. 
Among pioneers in this discipline one counts several 
unrecognized geniuses, such as J. J. Waterston who - thanks to 
Lord Rayleigh - received posthumous honours from the very 
same Royal Society that had steadfastly refused to publish his 
works during his lifetime. Ludwig Boltzmann committed suicide 
on September 5, 1906, depressed by the utter rejection of his 
atomistic theory by such colleagues as Mach and Ostwald. Paul 
Ehrenfest, another great innovator, died by his own hand in 
1933. Among 20th century scientists in this field, a sizable 
number have met equally untimely ends. So “now it is our turn
to study statistical mechanics” [D.H.Goodstein, States of Matter]

Temperature and Heat

Thermodynamics
Statistical 
Mechanics

Macroscopic
description of a 

'system'

Microscopic
description of a 

'system'

Statistical 
Thermodynamics

What is 'Thermal Physics'?
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boundary

surroundings

The portion of the universe set aside for investigation
is called the system. Everything outside the system is
called the surroundings. The system is separated
from the surroundings by a boundary, which may
have different properties.

What is 'system'?

The system can be influenced (i) by exchanging 
matter, (ii) by doing work, (iii) thermally. 

Open system: can exchange energy 
and matter. 

Closed system: cannot exchange 
matter; can exchange energy; can have 
movable or stationary boundaries. 

Thermally isolated system: cannot 
exchange energy in the form of heat; 
can do work. 

Isolated system: cannot exchange 
energy and matter; stationary 
boundaries. 

Types of systems
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The system is characterised by: 

chemical composition 
volume
pressure
temperature
density 

The macroscopic quantities that are used
to specify the state of the system are
called the state variables; their values
depend only on the condition or the state
of the system.

The Macroscopic View (human scale or larger)

The system is considered as
consisting of a large number
of particles, existing in a set
of energy states.

Probabilistic analysis.  

Statistical Mechanics

The Microscopic View (molecular scale or smaller)
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If the same system is considered, the two 
approaches must lead to the same conclusion!

How? Macroscopic 
parameters

Microscopic parameters 
averaged over time

e.g. Pressure
Average rate of change in 
momentum due to all molecular 
collisions on a unit area

 Macroscopic Microscopic 

Assumptions about 
structure of matter 

NO YES 

Parameters required Few Many 

Based on sensory 
perception 

mathematical 
models 

Directly measurable YES NO 

Likely to change NO ? 
 

Macroscopic vs. Microscopic

A
State SA

How an intuitive concept can be developed analytically?

 Open systems
 Closed systems
 Thermally isolated systems
 Isolated systems

System & Surroundings

State Variables

Boundary: in general, it may 
exchange matter and/or energy

What is Temperature?
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Definition: An equilibrium state is one in which all the 
state variables are uniform throughout the system and 
do not change in time.

A
State SA

When a system suffers a change in its 
surroundings, it usually is seen to undergo change. 
After a time, the system will be found to reach a 
state where no further change takes place. The 

system has reached 
thermodynamic equilibrium.  

Similarly, if two systems are placed in thermal contact, generally
changes will occur in both. When there is no longer any change,
the two systems are said to be in thermal equilibrium. The
equilibrium state is determined by the equilibrium values of the
state variables.

Thermodynamic Equilibrium and Thermal Equilibrium

A
State SA

B
State SB

boundary

The equilibrium state depends on the nature of the boundary!

 Adiabatic boundary: perfectly insulating. 

Any SA can coexist with any SB

Thermal Equilibrium: SA and SB are constant, but 
not necessary equal.  

 Diathermic boundary: perfectly conducting.

Change in SA leads to change in SB

Thermal Equilibrium
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A B

C

A B

C

A and B are insulated from 
each other, but are both in 
thermal equilibrium with C.

What will happen, if A and B
are brought into contact via 
a diathermic wall? 

Result: no change in the states of A and B. 

This means that A and B are in thermal equilibrium: the two
systems are found in such states that, if the two were
connected through a diathermic wall, the combined system
would be in thermal equilibrium.

adiabatic

adiabaticdiathermic

diathermic

The experiment

Two systems in thermal equilibrium with a third 
one are in thermal equilibrium with each other. 

(Fowler & Guggenheim 1939) 

[First Law – Helmholz 1847 

Second Law – Carnot 1824] 

Is this obvious? 

The Zeroth Law of Thermodynamics
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All systems in thermal equilibrium with each other 
possess a common property which we call the 
temperature. 

The temperature is that property that determines 
whether a system is in thermal equilibrium with other 
systems. 

Two systems are in thermal equilibrium if and only if 
they have the same temperature. 

Temperature

In any process where heat Q is added to the system and 

work W is done by the system, the net energy transfer, 

Q  W, is equal to the change, U, in the internal 
energy of the system. 

WQU Δ

WUQ  Δ

Q
increase internal energy

work on surroundings

12Δ UUU 

The First Law of Thermodynamics
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The First Law of Thermodynamics

Sign convention: In most statistical physics 
textbooks W is the work done on the system. Work 
W is positive if it is done on the system, similar to 
Q, which is positive if heat is added to the system. 

WQU Δ

In Joule’s paddle-wheel 
experiment the work of 
gravity was indeed done on
the system!

Thus 

The First Law states: 

 Conservation of energy in thermodynamic systems 

dU is an exact differential.
U is a function of the state of the system only.

WQdU  

12Δ UUU  depends only on the initial and end states 
and not on the path between them

 PT,UU 

 Internal energy depends only on the state of the 
system, i.e. its change is path-independent

The First Law of Thermodynamics

PdVQdU  
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is an exact
differential and, correspondingly, F(x,y) does not 
depend on the path only if

The First Law does not explain:

The First Law: A perpetual motion 
machine of first kind is impossible.

 Ease of converting work to heat but not 
vice versa.

The First Law of Thermodynamics

 Systems naturally tend to a state of 
disorder, not order.

 Heat only flows DOWN a temperature 
gradient.  
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T1  > T2 T2 T TX

X
Gas Vacuum Gas Gas

Although there would be no violation of the First Law, the reverse 
processes do not happen. Therefore, there must be a principle, 
dictating the direction of the processes in isolated systems: 

the Second Law 

The Second Law

gasP

0P
Irreversible processes:

Finite changes in the state variables 

Existence of dissipative forces such as friction

All real processes are irreversible! 

Reversible processes (idealised):

Well-defined locus on PV (or equivalent) 
diagram

Can be retraced so that system and
surrounding are restored

gasgas PδPPP 0

gasgas PPPP 0

frictiongas PPP 0

Reversible vs. Irreversible Processes
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0Δ cyc U

WQU Δ

Q1

14433221   WWWWW

QW 

Q2

Q1

Q2

T1

T2

T1

T2

 2121 QQQQQ 
 2121 QQQQW 

1Q

W
η  thermal efficiency 

of the engine 

Carnot Cycle

   
1

2

1

21

1

1
Q

Q

Q

QQ

Q

W
η 




Experiment:
it is impossible to build a heat engine with  = 100 % 

(i.e., a machine that converts heat completely to work).  

The Second Law of Thermodynamics: 

No process is possible whose sole result is the extraction
of heat from a single reservoir and the performance of an
equivalent amount of work.

Kelvin formulation

The Second Law
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Q1

Q2

T1

T2

Working substance: ideal gas

 
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Q

Q
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0Δ 21 U

0Δ 43 U
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Thermal Efficiency of the Carnot Cycle

Q1

Q2

T1

T2

 :32For  1
32

1
21

  γγ VTVT

 :14For  1
42

1
11

  γγ VTVT

1

4

3

1

1

2




















γγ

V

V

V

V

4

3

1

2

V

V

V

V


   
  1

2

12

43

1

2

1

2

/ln

/ln

T

T

VV

VV

T

T

Q

Q


 
1

2

1

2 11
T

T

Q

Q
η 

Thermal Efficiency of the Carnot Cycle
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Q1

Q2

W

Q
η 2

R  coefficient of 
performance

Refrigerators extract heat from a
colder reservoir and transfer it to a
hotter reservoir. Experience shows
that this always requires work.

The Second Law of Thermodynamics: 

No process is possible whose sole result is the removal
of heat from a reservoir at one temperature and the
absorption of an equal quantity of heat by a reservoir at
a higher temperature.

Clausius formulation

R
1

HP 1 η
W

Q
η  for heat pumps

T1

T2

Carnot Cycle as a refrigerator

No engine can be more efficient than a Carnot 
engine operating between the same two 

temperatures. 

1

21
T

T
η 

Q1

W

Carnot 
engine

Thermal Efficiency of the Carnot Cycle
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1

21
T

T
η 

Independent of working substance 

Depends only on reservoir temperatures T1 and T2

Maximum possible efficiency of any heat engine 

Equal to the efficiency of any other reversible heat engine 

Note that  = 1 when T2 = 0. 

Therefore, the Second Law forbids attainment of the 
absolute zero.

Thermal Efficiency of the Carnot Cycle

 
1

2

1

2

1

2 111
T

T
=

Q

Q

Q

Q
η 

Q1

Q2

T1

T2

0
2

2

1

1 
T

Q

T

Q

   
0  T

Q

T

Q R

i i

R
i 

0
i i

i

T

Q

Consider any reversible cyclic process. It can be 
approximated by an infinite number of Carnot cycles. 

By summing up Q/T for each of them we obtain: 

for any reversible cyclic 
process. 

Entropy
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 
0 T

Q R
for any reversible cyclic process.

This means that               is an exact differential. 
 

T

Q R

dS is an exact differential, therefore 
the entropy S is a function of state. 

S  entropy

The change in entropy S between two states is 
determined solely by the initial and final equilibrium 

states and not by the path between them. 
 

 

 


2

1

12Δ
T

Q
SSS

R

 

T

Q
dS

R
   TdS=Q R Reversible only!

For an infinitesimal reversible change: 

Entropy

Remember that the reversible Carnot engine has a maximal
thermal efficiency, equal to the efficiency of any other
reversible heat engine.

Compare a reversible (R) and an irreversible (I) heat engine:
 

 I

I

I Q

Q
η

1

21
 

 
1

2

1

2 11
T

T

Q

Q
η

R

R

R  RI ηη 

 

 
1

2

1

2

T

T

Q

Q
I

I


   

0
2

2

1

1 
T

Q

T

Q II

 
0 T

Q I

 
0

i i

I
i

T

Q

Compare with  
0 T

Q R

 
0

i i

R
i

T

Q

irreversible reversible

0 T

Q

Entropy and irreversible processes
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For an infinitesimal process: 

T
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   
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1
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Q RI

 


 

 

 


2

1

Δ
T

Q
S

I

(note that the equality applies only 
if the process is reversible)

 

T

Q
dS

I


Entropy and irreversible processes

T

Q
dS




For a system which is thermally isolated 
(or completely isolated) Q = 0:

0dS

The entropy of a (thermally) isolated 
system cannot decrease!

Entropy distinguishes between reversible and irreversible 
processes.

Helps determine the direction of natural processes and 
equilibrium configuration of a (thermally) isolated system: 
maximal entropy.

Provides a natural direction to the time sequence of natural 
events.

Entropy and irreversible processes

The Clausius inequality
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In a (thermally) isolated system, 
spontaneous processes proceed in 
the direction of increasing entropy.

0dS

Consider processes like irreversible heat flow or free expansion 
of a gas. They result in increased disorder. 

Example: Reversible (quasistatic) isothermal expansion of an 
ideal gas: 

dS
T

Q

V

dV




V

dV is a measure of 
the increase in 
disorder

dS
V

dV


V

dV
nRTPdVWQdU  0

Entropy and disorder

Microscopically, the entropy of a system is a measure of the 
degree of molecular disorder existing in the system 

(much more on this later in this module): 

 lnkS  is the thermodynamic probability

Therefore, in a (thermally) isolated system, only 
processes leading to greater disorder (or no change of 
order) will be possible, since the entropy must increase 

or remain constant,           .0dS

Entropy and disorder
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WQ=dU   PdVW  TdSQ 

PdVTdSdU 

always reversible reversible

Here all the variables are functions of state, so that all the 
differentials are exact. Therefore, it is true for all processes. 

i
i

idxXPdVTdSdU 











σdA

fdl

dxX iiwhere

More generally

The Fundamental Thermodynamic Relationship

1) A nuclear power station is designed to generate 
1000 MW of electrical power. To do this it maintains 
a reservoir of superheated steam at a temperature 
of 400 K. Waste heat from the reactor is transferred 
by a heat exchanger to circulating sea water at 
300 K. What is the minimum possible rate of nuclear 
energy generation needed?

Exercises
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2) You are asked to design a refrigerated warehouse to 
maintain perishable food at a temperature of 5 C in 
an external environment of up to 30 C. The size of 
the warehouse and its degree of thermal insulation 
mean that the refrigeration plant must extract heat 
at a rate of 1000 KW. As a first step you must 
supply the local electricity company with an 
estimate for the likely electrical consumption of the 
proposed warehouse. What value would you suggest 
as a working minimum?

Exercises

3) One mole of ideal gas is maintained at a 
temperature T. 

a) What is the minimum work needed to reduce its 
volume by a factor of e (=2.718…) ? 

b) What is the entropy loss of the gas during this 
process? 

4) 1 kg of water at 20C is placed in thermal contact 
with a heat reservoir at 80C. What is the entropy 
change of the total system (water plus reservoir) 
when equilibrium has been re-established? 

Exercises
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5) Demonstrate that the entropy change for n moles of 
ideal gas can also be written as

where T1, P1 and T2, P2 are the initial and final 
temperatures and pressures respectively and  CP is 
the heat capacity at constant pressure. 

Exercises




















1

2

1

2 lnln
P

P
nR

T

T
CS P

6) Consider two identical bodies with heat capacity C
initially at different temperatures T1 and T2. Show 
that the process of reaching thermal equilibrium 
necessarily involves a total increase in entropy.
[See Supplement 1 on ELE]

Exercises
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Preamble: distribution functions

ni: number of students 
who received mark si

N

n
f i

i 

ni(si) and fi(si): 
distribution functions

1
1

 
i

i
i

i

i
i n

NN

n
f

 
i

ii
i

ii fssn
N

s
1       

i
ii

i
ii fsgnsg

N
sg

1

 
i

ii
i

ii fsns
N

s 222 1 2
rms ss 

1. Discrete distributions

14.2 Mark

Statistical Mechanics: an introduction

smp = 16

2. Continuous distributions

  1  dPdhhf

f(h)dh: the probability of a 
person having a height 
between h and h+dh

f(h): distribution function

dN = Nf(h)dh: number of people 
with height between h and h+dh

 dhhfhh       dhhfhghg 

 dhhfhh  22

 dhhf
N

dN
dP 

Statistical Mechanics: an introduction
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What is the distribution of molecular speeds 
about average?

Expect:

 Mean vx = 0 (no convection). 

 No. of molecules with vx = No. of molecules with vx
(even distribution function).

 No. of molecules with vx → ±∞ is negligible.

The Maxwell-Boltzmann distribution

Let f(vx) is the velocity distribution function. 

Then the probability a molecule will have velocity 
between vx and (vx + dvx) is: 

  xxxv dvvf
N

dN
dP 

The number of molecules with velocity between vx and (vx + dvx) is: 

  xx dvvNfdN 

    NdvvfNdvvNfdN xxxx  








  1



xx dvvf as required

The Maxwell-Boltzmann distribution
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Guess that velocity distribution is 
Gaussian (normal distribution) 

[can be derived using SM or from 
symmetry arguments]:

  2
xBv

x Aevf 

vx vx 0

 xvf A

A
2

1

B
vx

ln22 

Satisfies our three expectations. 

A determines the height 
(normalisation)

B is inversely related to the width

The Maxwell velocity distribution

1. Normalisation (determines A)

  1
2

 







 x

Bv
xx dveAdvvf x

πdxe x 




 2

Remember that

Therefore πBA /

2. Physical meaning of B

Calculate          :2
xv   xxxx dvvfvv 





 22

The Maxwell velocity distribution
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  x
Bv

xxxxx dvevπBdvvfvv x
2222 / 








 

3

22

2

1

β

π
dxex βx 




 B

vx 2

12 

kTvmE xx 2

1

2

1 2   kT

m
B

2


T
B

1


For the distribution function we have: 



  kT

mv
Bv

x

x

x e
πkT

m
Aevf 2

2/1 2

2

2

 







The Maxwell velocity distribution

In 3 dimensions
The probability a molecule will have velocity between 
vx and (vx + dvx), vy and (vy + dvy), vz and (vz + dvz)
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The Maxwell velocity distribution
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What is the probability a molecule having speed between v and v + dv?

(remember that                           )2222
zyx vvvv 

  zyxzv,yv,xv dvdvdvvfdP 1

  dvπvvfdPv
2

1 4

dvev
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m
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mv
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The Maxwell-Boltzmann speed distribution function
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23 T>T

As T increases the curve 
flattens and the peak 
moves towards higher 
speeds.

Effect of temperature
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1. Mean (average) speed

  dvev
πkT
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
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πm
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v

8


2. Root Mean Square (rms) speed
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Molecular speeds

3. Most probable speed
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dv

vdf 
m

kT
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2
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 vf

v
mpv v rmsv

rmsmp v<v<v

Molecular speeds
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The Maxwell-Boltzmann energy distribution function 

  dvev
πkT

m
πdvvfdP kT

mv

v
22

2/3 2

2
4










Starting from

find  the distribution function F(E) for the energy by calculating the 
probability for a molecule to have energy between E and E + dE:

 dEEFdP E
where

2

2mv
E 

Answer:     kT

E

eEkT
π

EF
 2/12/32

Examples

The Maxwell-Boltzmann energy distribution function

We can exploit the 1:1 correspondence 
between  and v to reformulate the 
speed distribution as a kinetic energy 
distribution :

v



v0

0

v0+dv

0+d

v
v v

d
d

d
d

0

 
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The Maxwell-Boltzmann energy distribution function

Since a speed between v0 and v0+dv
implies an energy between 0 and 0+d, 
with ,
the probability of obtaining a speed
between v0 and v0+dv equals probability
of obtaining an energy between 0 and 
0+d. hence, with 

v
v

d
d

d
d




v2mvv
v

ddd;
2

2

  m
m

The Maxwell-Boltzmann energy distribution function
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Exercise: What happens in a 2D case?
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The Maxwell-Boltzmann energy distribution function

Example of the Boltzmann factor 

Consider a mass of isothermal ideal gas, at temperature 
T. For a thin slab of gas at height z0, thickness z and 
cross-sectional area A to not fall under gravity requires :

z=z0

z=z0+z

p(z0+z).A

p(z0).A

Hydrostatic equilibrium:-
     
      gzzzzpzp

gzAzAzzpAzp




000

000
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Example of the Boltzmann factor

Expanding p(z) in a Taylor series: 

           43
3

3
2

2

2

00 O...
d

d

!3

1

d

d

!2

1

d

d

000

zz
z

zp
z

z

zp
z

z

zp
zpzzp

zzz



In the limit that the slab thickness z0, 
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d
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Hence,

With mA being the mass of one gas atom and n
being the number density of gas atoms.

Example of the Boltzmann factor

Ideal gas equation of state: ,BBB TnkTk
V

N
pTNkpV 

       zn
Tk

gm

z

zn
gmzn

z

zn
Tk

B

A
AB d

d

d

d
hence

    







 z

Tk

gm
znzn

B

Aexp.0

Hence n(z), (z) and p(z) all fall exponentially with height.

Here mAgz is the gravitational potential energy of a gas 
atom at height z. Since n(z)  probability of finding a gas 
atom at height z, suggests that the probability of finding 
a gas atom in an “energy level” of value (z) is 
proportional to  











Tk

z

B

exp


- Boltzmann factor
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Example of the Boltzmann factor

The Boltzmann factor is of universal validity; whenever 
an ensemble of classical particles are in equilibrium at 
temperature T, the probability of an energy level of 
value (z) being “occupied” by a particle of the ensemble 
varies as the negative exponential of (z)/kBT. 

Energy 

Probability of a particle 
possessing   this energy

Mathematical detour

Plot (sketch)

Consider

Find  A from the “normalisation” 
condition:

(a)

(b)
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Mathematical detour

Example of Boltzmann energy sharing 

7 identical, but distinguishable systems, each with 
quantized energy levels 0, 1, 2, 3 … We have a total 
energy of 7 to share amongst the systems. Labeling the 
systems A…G, some possible arrangements are :-

Note that the first two, distinct, arrangements 
nevertheless correspond to an identical macroscopic
energy sharing arrangement (macrostate ‘a’ in the table 
below). 
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Example of Boltzmann energy sharing

Denoting the number of systems in energy level i as 
ni, then , the number of possible microstates 
corresponding to this macrostate is given by 

!...!!!!!!

!7

6543210 nnnnnnn 
 or in general .

!

!








0i

ni

N

Since the ni’s must satisfy the constraints Nn
i

i 


0

and ,
0

Un i
i

i 




 with N the total number of systems 

and U the total shared energy, we can complete the 
table of  for each macrostate 

Example of Boltzmann energy sharing
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Example of Boltzmann energy sharing

Note that, if one of the 1,716 distinct microstates were 
chosen at random, macrostate ‘j’ would occur with a 
probability of 420/1716 i.e. 24%. This is the most 
probable macrostate, and distributes the available 
energy roughly as a negative exponential function:

0

1

2

3

4

0 1 2 3
energy of level

le
ve

l 
o

cc
u

p
an

cy

i.e. the relative 
occupancy of an 
energy level falls 
exponentially as the 
energy of that level 
increases. This pattern 
becomes clearer as the 
number of systems and 
the shared energy are 
increased. 

Example of Boltzmann energy sharing

In total, there are 1,716 possible ways to share 7
amongst 7 identical systems. To calculate this directly, 
consider 7 distinguishable heaps A, B, C… G. How 
many ways can we distribute 7 identical bricks among 
these? One possibility is
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Example of Boltzmann energy sharing

Equivalent problem. Consider a pile of 7 bricks and 6 
partitions (all indistinguishable). 

If we draw objects (bricks or partitions) at random, 
each distinct sequence of bricks and partitions 
corresponds to exactly one possible distribution of 7 
bricks amongst 7 heaps e.g. the possible 
arrangement noted above corresponds to the 
sequence

Example of Boltzmann energy sharing

|   |    | |  |  |

If bricks and partitions are indistinguishable, 
number of ways equals  

716,1
!6!7

!67




Hence in general, we can distribute N
packets of energy over k systems in

 
 !1!

!1




kN

kN
ways.
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The fundamental postulates of statistical mechanics

1. An ensemble of identical but 
distinguishable systems can be 
described completely by specifying its 
“microstate”. The microstate is the 
most detailed description of an 
ensemble that can be provided. For 
an ideal gas of N particles in a 
container, it involves specifying 6N
co-ordinates, the position and velocity 
of all N particles. For the example of 
Boltzmann energy sharing, it involves 
specifying the energy level occupied 
by each individual system.

The fundamental postulates of statistical mechanics

2. Physically we observe only a 
corresponding “macrostate”, 
specified in terms of macroscopically 
observable quantities. A macrostate 
for an ideal gas is specified fully by a 
few observable quantities such as 
pressure, temperature, volume, 
entropy etc. For the example of 
Boltzmann energy sharing, a 
macrostate is specified fully by the 
occupancies of the various energy 
levels e.g. [0,7,0,0,0,0,0,0…] is a 
macrostate of equal energy sharing.
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The fundamental postulates of statistical mechanics

3. If we observe an ensemble over time, 
random perturbations ensure that all 
accessible microstates will occur with 
equal probability. Hence probability of 
a macrostate occurring  = 

4. The macrostate with the highest 
probability of occurrence corresponds 
to the equilibrium state.

Boltzmann distribution

Maximise







0

!

!

i
in

N

subject to the constraints 









00 i

ii
i

i UnNn

using Lagrange Undetermined Multipliers (see 
supplementary sheet).

Solution: 
 
 










0

exp

exp

i
i

ii

N

n
(with  undetermined)

Assigning TkB1
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Boltzmann distribution

Boltzmann distribution
NB ni / N is the probability that a state of energy i is 
occupied by a member of an ensemble which is in 
thermal equilibrium at temperature T. 

Examples

Ensemble of N gas atoms. Outer electron can reside in 
a “ground-state” energy level, or in an excited state, 
1 eV above this. At 1000 K, what fraction of atoms lie 
in the excited state, relative to the ground-state?

Boltzmann distribution:
 

 









0
B

B

exp

exp

i
i

ii

Tk

Tk

N

n

ni is no. of systems occupying a state of energy i, 
when ensemble of N such systems is in thermal 
equilibrium at temp T. For a 2-level system, energies 
1, 2, relative occupancy of these levels is given by 
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Examples

 
 

 

    Tk
Tk

Tk

Tk

Tk

n

n i
i

i
i

B12
B1

0
B

0
B

B2

1

2 exp
exp

exp

exp

exp






















 Tk
n

n
B

1

2 exp 

with 12  

Useful “rule of thumb”: At room temperature (300K) 
the thermal energy kBT is 25 meV

Examples

Hence at 1000 K the thermal energy is 
25 meV1000/300. 

n2/n1 = exp(–1/(2510–3 10/3)) = exp(-12) = 610–6

Cool the gas to 300 K:-

n2/n1 = 610–6

n2/n1 = exp(–1/(25*10–3)) = exp(–40) = 410–18

n2/n1 = 410–18

Very strong T-dependence!
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Examples

Ensemble of protons, magnetic moment , in external 
magnetic field B. Magnetostatic potential energy = +B
if proton spin anti-parallel to field, –B if proton spin 
parallel to field.

Simple 2-level system:

B

1 = +B

0 = –B

Proton spin vector

In equilibrium, what is 
the net imbalance 
between spin “aligned” 
(n) and spin “anti-
aligned” (n) protons 
(i.e. what is the 
fractional 
magnetization) at 
room temperature? 

Examples

    
    

  
  TkB

TkB

Tk

Tk

nn

nn

nn

nn

B

B

B01

B01

2exp1

2exp1

exp1

exp1

1

1

























Proton  = 1.4110–26 JT–1. B = 1 T (typically), 
T = 300 K.      Hence 2B = 2.8210–26 J. 

kBT = 1.3810–23300 J = 4.1410–21 J.

Since 2B << kBT : 

  
   Tk

B

TkB

TkB

nn

nn

BB

B

211

211 













    TkBTkB BB 212exp 
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Examples

Hence at 300K and 1 T, the net imbalance of proton 
spins is 1.4110–26 / 4.1410–21 J 

= 3.410–6

i.e. a very small imbalance.

Degeneracy

More than one ‘state’ can correspond to the 
same ‘energy level’.
‘State’: the fullest description of a system allowed by 
quantum mechanics. A full set of ‘quantum numbers’
must be specified, specifying e.g. the energy, orbital 
angular momentum and spin of the system. 
‘Energy level’:- a quantized energy value that can be 
possessed by the system. Specified using a single 
quantum number (the ‘principal’ quantum number). 

E.g., electron of mass me in a 1-D infinite potential well 
of width L

Lm

h
nn

e

2
2

8


The integer n (=1, 2, 3…) labels 
the energy levels and is the 
principle quantum number. 
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Degeneracy

To fully specify the state of an electron in the 
well we must specify two quantum numbers n
and s (s = –½ or ½). s is the “spin” quantum 
number and specifies whether the electron spin 
is found to be “up” or “down” if measured 
relative to a given direction in space. In the 
absence of an external electromagnetic field, the 
energies of state (n, –½) and (n, ½) are 
identical. Thus energy level n is said to be two-
fold degenerate (or to have a degeneracy factor 
g equal to 2) in this example.

Degeneracy

The Boltzmann distribution gives the probability 
that a state i of energy i is occupied, given an 
ensemble in equilibrium at temperature T. To 
calculate the probability that an energy level of 
energy i, whose degeneracy factor is gi, is 
occupied simply sum the probabilities for all the 
degenerate states corresponding to the energy 
level i, i.e. multiply the appropriate Boltzmann 
factor by gi. Hence, denoting pi as the probability 
that a state i is occupied and p(i) the probability 
that an energy level i is occupied, we can write 
the Boltzmann distribution in two ways:
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Degeneracy

 
 

   
 








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


levelsenergyall

0
B
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statesall

0
B

B

exp

exp

exp

exp

i
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ii
i

i
i

i
i

Tkg

Tkg
p

Tk

Tk
p

Degeneracy

Example:

The 1st excited energy level of He lies 19.82 eV above 
the ground state and is 3-fold degenerate. What is the 
population ratio between the ground state (which is not 
degenerate) and the 1st excited level, when a gas of He 
is maintained at 10,000 K? 

 
 
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423

19

B0

1
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1
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101038.1

106.182.19
exp3exp
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



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


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



 





Tkg

g

p
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Microscopic interpretation of entropy

Two identical “ensembles” each of 7 identical systems 
are placed in diathermal contact and share a total energy 
14. Each system can possess energy 0, , 2, 3 … What 
is the most probable distribution of energy? 
One possibility :

Microscopic interpretation of entropy

Total number of arrangements on LHS LHS = 2,7 = 28,

[               ]. Likewise RHS = 12,7 = 18,564. 
 

 !1!

!1
, 




kn

kn
kn

Hence total = LHSRHS = 519, 792. Tabulate this for 
ALL possible sharings: LHS RHS LHS RHS total

0 14 1 38760 38760
1 13 7 27132 189924
2 12 28 18564 519792
3 11 84 12376 1039584
4 10 210 8008 1681680
5 9 462 5005 2312310
6 8 924 3003 2774772
7 7 1716 1716 2944656
8 6 3003 924 2774772
9 5 5005 462 2312310
10 4 8008 210 1681680
11 3 12376 84 1039584
12 2 18564 28 519792
13 1 27132 7 189924
14 0 38760 1 38760

20058300 (TOTAL)

The “macrostate” 
of equal energy 
sharing can be 
realized in the 
most number of 
ways!
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Microscopic interpretation of entropy

Choosing a “microstate” at random, the macrostate of 
equal energy sharing would occur with 
2944656/20058300 = 15% probability. Macrostate of 
completely uneven sharing [(0,14) or (14,0)] occurs with 
2*38760/20058300 = 0.4% probability. 

Plot this graphically:-

Microscopic interpretation of entropy

Over time, the ensembles will spontaneously evolve via 
random interactions to “visit” all accessible microstates 
with, a-priori, equal probability. If initially in a 
macrostate of low Wtotal, it is thus overwhelmingly likely 
that at a later time they will be found in a macrostate of 
high Wtotal. 
c.f. 2nd law: systems spontaneously evolve from a state 
of low S to a state of higher S. 

 lnBkS

Boltzmann/Planck hypothesis, 1905. Defines “statistical 
entropy” 
Clausius’s S (“classical” entropy) is an “extensive” 
variable/function of state i.e. two ensembles a) and b), 
Stotal = Sa + Sb.
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Microscopic interpretation of entropy

Statistically total = a  b, 

.

lnln

ln

ln

ba

bBaB

baB

totalBtotal

SS

kk

k

kS







Hence statistical entropy is 
also extensive. 

Extensive variables – increase with the system size.
Intensive variables do not increase with the system size.

Microscopic interpretation of entropy

Equilibrium macrostate has the highest ln, 
hence

 

0
d

dln

d

dln

0
d

lnlnd

0
d

dln

LHS

RHS

LHS

LHS

LHS

RHSLHS

LHS

total




















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Microscopic interpretation of entropy

Since

RHS

RHS

LHS

LHS

RHSLHS

RHSLHStotal

d

lnd

d

lnd

dd

constant















Since  lnBkS

RHS

RHS

LHS

LHS

d

d

d

d





SS

Microscopic interpretation of entropy

Intuitively, equilibrium implies equal 
‘temperature’ for the ensembles. Combined with 
dimensional arguments ([S]/[] = K–1) suggests

for any system.
T

S 1

d

d



Since we considered the energy levels to be 
fixed, implicitly we assumed V = const. (QM 
predicts energy spacing increases as size of 
potential well decreases), hence formally

T

S

V

1











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Maxwell relations

Classically:-

Expect U = U(T) for an ideal gas, but Joule found slight 
cooling during isoenergetic expansion of a real gas. 
Suggests we need other variables to fully define U. 

Fundamental thermodynamic relationship:
VpSTU ddd 

c.f. Math for Physicists for a general function f(x,y) :

     
y

y

yxf
x

x

yxf
yxf

xy

d
,

d
,

,d 
























Maxwell relations

Suggests U = U(S,V) and 

p
V

U
T

S

U

SV





















Hence (first relation):

TU

S

V

1











c.f.
T

S

V

1












found earlier.

S & V are the “natural variables” of U

Also, since 
VS

U

SV

U







 22

VS S

p

V

T






















1st Maxwell Relation
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The Joule-Thompson process

Joule-Thompson (Joule-Kelvin) process: obstructed flow 
of gas from a uniform high pressure to a uniform low 
pressure through a semi-permeable “porous plug”. 

Small mass of gas m traverses the obstruction: initial 
pressure p1, volume V1, internal energy U1; final 
pressure p2, volume V2, internal energy U2. 

The Joule-Thompson process: enthalpy

Total work done = -p1 (0-V1) – p2 (V2-0). Since the process 
is adiabatic, 1st law implies:

U2 – U1 = p1 V1 – p2 V2 hence 

U1 + p1 V1 = U2 +p2 V2 .

define H = U + pV,

where H is “enthalpy”. 

Then H1 = H2 where H1 is the enthalpy of the small mass 
of gas m before traversing the obstruction, ditto H2. 

Hence enthalpy is conserved in the J-T process, i.e. J-T 
expansion is isenthalpic. 
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Maxwell relations: enthalpy

Differentiating:

dH = dU + pdV+ Vdp

Since dU =TdS – pdV

dH = TdS + Vdp

Hence H = H (S, p).

By analogy with U = U (S, V).

V
p

H
T

S

H

Sp






















,

Maxwell relations: enthalpy

Hence (by equating cross-derivatives), 

pS
S

V

p

T





















2nd Maxwell relation

n-moles of ideal gas :-

nRTH

nRTpVnRTU

2

5

&
2

3




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Maxwell relations: enthalpy

Hence H = H (T) for an ideal gas, hence J-T process 
does NOT cool an ideal gas (H=const => T=const). 

Since dH = TdS + Vdp , for a reversible isobaric 
process (dp = 0)            dH = TdS = δQ. 

Hence H represents the heat flow during a reversible 
isobaric process i.e.           dH = Cp dT

c.f. dU = CV dT , i.e. U represents the heat flow 
during an isochoric process. 

H is useful when studying processes that occur at 
constant pressure, e.g., chemical reactions in an 
open container. 

The Joule-Thompson process

 
  .

/

/
JT

p

T

H
TH

pH

p

T

















 

.JT
p

TT

C

p
pV

p
U



























 TpU 

Since H = U + pV

However, in this relation can not be obtained 
from measurements or from the equation of state. 
Therefore, a more convenient form for        follows from 
the relation:

JT



53

The Joule-Thompson process

.
pT

T

V
TV

p

H



















 The derivation is left as an 

exercise (non-trivial).

Therefore, .
1

JT






















 V
T

V
T

C pp



It is easy to see that for an ideal gas vanishes. JT

.1
2
32





  

V

B

V

B
RTpV

The equation of state for one 
mole of a real gas can be 
written as (virial expansion):
For a gas of low density 
(keeping terms up to B2 only)

,pTBRTpV )(2

.
)(

d
)(d

2
2

JT
pC

TB
T
TB

T 
whence

The Joule-Thompson process

Curves of constant enthalpy. The dashed curve is the 
inversion curve.  On it Inside (outside) it, 
the gas is cooled (warmed) on expansion.

  .0 HpT

iT
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The Joule-Thompson process

.
pT

T

V
TV

p

H





















Exercise: Show that

gas He H2 N2 A O2

Ti(K) 23.6 195 621 723 893

Inversion temperature of some gases

JT process can cool (ultimately liquefy) O2 and N2
directly. Must pre-cool H2 and He e.g. by heat 
exchange with liquefied N2.

JT expansion is a step in the “Linde Liquefaction Cycle”. 
Very widely used to manufacture cryogens, rocket fuel 
etc.

Thermodynamic potentials

For a simple fluid system of fixed size (i.e. fixed N) there 
are four thermodynamic potentials :-

1. Internal energy U 

2. Enthalpy H = U + pV

3. Helmholtz Free Energy F = U – TS

4. Gibbs Free Energy G = U – TS + pV

By analogy with U and H :-

dF = dU – TdS – SdT = –pdV – SdT

Hence F = F(T,V), i.e. T and V are the natural variables 
of F.
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Thermodynamic potentials: Helmholtz Free Energy

Also S
T

F
p

V

F

VT





















hence

TV V

S

T

p




















3rd Maxwell Relation

Since dF = –pdV – SdT the change in F represents 
the work done on/by a system during an isothermal 
(dT = 0) process.

Thermodynamic potentials: Helmholtz Free Energy

Also, dF = dU – TdS – SdT in general, but
TdS = dU + pdV only for changes between equilibrium 
states. For changes between non-equilibrium states 
TdS > dU + pdV [recall example sharing 14 between 
2 ensembles: dU = zero (total energy constant), 
dV = zero (fixed energy levels) but dS > 0 except when 
equilibrium reached].
Hence  dF =zero when equilibrium reached, dF < zero
as equilibrium is approached. Hence

For a system evolving at constant volume and 
temperature, equilibrium corresponds to a 
minimum of the system’s Helmholtz free energy.
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Thermodynamic potentials: Gibbs Free Energy

dG = dU – TdS – SdT+ pdV+Vdp = – SdT + Vdp

Hence G = G(T, p) i.e. T and p are the natural variables 
of G.

Also S
T

G
V

p

G

pT






















hence

Tp p

S

T

V





















4th Maxwell Relation
For a system evolving at constant pressure and 
temperature, equilibrium corresponds to a 
minimum of the system’s Gibbs free energy.

Thermodynamic potentials: Gibbs Free Energy

For a reversible process occurring at constant pressure 
and temperature (e.g. a phase change between gas and 
liquid such as from A to B in the figure below), the Gibbs 
free energy is a conserved quantity.
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Thermodynamic potentials

THERMODYNAMIC POTENTIALS AND MAXWELL 
RELATIONS SUMMARY TABLE

The Joule process

UV

T










 J

For U = U(T,V), 
chain rule for 
partial 
derivatives 
(see PHY1026):

 
 V

T

U

TUV

TU

VU

V

T

U

V

V

T

T

U














































1

  VV CTU 

,VpSTU ddd 
by dV treating T as a constant):

The free expansion of a gas into a vacuum, 
the whole system being thermally 
insulated: the total energy conserved.  

hence (divide
p

V

S
T

V

U

TT




















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The Joule and Joule-Thompson processes






























 p
V

S
T

CV

T

TVU

1
J

3rd Maxwell relation: ,
VT T

p

V

S


















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hence


















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 p
T

p
T

C VV

1
J

Similarly

































 V
T

V
T

Cp

T

ppH

1
JT

The Joule and Joule-Thompson processes

Hence calculate J and JT from the equation of state
p = p(V,T), e.g. n moles of ideal gas: pV = nRT , hence

and  hence J = JT = zero.  TpVnRTp V 

Real gas virial equation of state (see PHY1024):

      






























 

3

4

2

321
V

n
TB

V

n
TB

V

n
TB

nRT

pV

Usually only first 2 terms are needed for good accuracy, 
hence 
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The Joule process

     

    

   
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V
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 
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nT
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V d

d 2
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J 







For all real gases
 

0
d

d 2 
T

TB
(see Mandl sec 5.5), hence

J < 0, i.e. Joule expansion always cools.

The Joule-Thompson process

In the limit of low pressure (i.e. p0)

   





  TB

T

TB
T

C

n

p
2

2
JT d

d

Hence JT > 0 (i.e. JT expansion cools) if 

but JT < 0 (i.e. JT expansion heats) if

    TTBTTB 22 dd 

    TTBTTB 22 dd 



60

The Joule-Thompson process

The Joule-Thompson process

Tinv (inversion temperature) is maximum temperature 
a gas can have and still be cooled by J-T expansion. 
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The partition function

Boltzmann distribution
 ,
Z

p i
i




exp

where    

Tk

gZ
i

ii
i

i

B

levelsenergyall

0

statesall

0

1

-exp-exp



 






with

Z is the “partition function”.

a) It ensures that the pi’s are normalized, i.e.

.1
statesall

0


i

ip

The partition function

b) It describes how energy is “partitioned” over the 
ensemble i.e. states making a large contribution to Z
have a high pi hence a large share of the energy.

c) Links microscopic description of an 
ensemble to its macroscopic variables/ 
functions of state.

E.g., for an ensemble of N identical systems: 

.
0

i
i

i pNNU 




 
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The partition function

In equilibrium at temp T

   

    
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ln2

B (in equilibrium)

The partition function

In general:  lnBkS

with .







0

!

!

i
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N
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




0
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Stirling’s approximation:- for large x

ln x!  x ln x– x
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The partition function

 
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The partition function







0

B ln
i

ii ppNkS (in general, for N and all ni’s large)

In equilibrium :-

 

 

ZTNkTSU

ZNk
T

U
ZNkUk

pZNkpNkZpNk

Z
pNkS

i
ii

i
ii

i
i

i

i
i

ln
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
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
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
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The partition function

U – TS is the Helmholtz Free Energy F, hence

ZTNkF lnB (valid in equilibrium)

 

TT

VV

V

Z
TNk

V

F
p

T

ZT
Nk

T

F
S














































ln

ln

B

B

Einstein solid

Einstein solid – crystal of N atoms, each free to perform 
SHM about its equilibrium position in x, y and z directions.

Classical equipartition theorem (PHY1024) – in thermal 
equilibrium at temperature T, ensemble will possess a 
mean internal energy U given by 


2
BTk

U

With  being the number of degrees of freedom, i.e. the 
number of squared terms appearing in the expression for 
the total internal energy when expressed in generalized 
co-ordinates of position and velocity:    and   .q q
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Einstein solid

222

2

1

2

1

2

1
KE zmymxmE  

E.g., for a point particle of mass m moving in 3-D

Hence  = 3.

For a classical harmonic oscillator of mass m, spring 
constant k in 3-D,

222222

2

1

2

1

2

1

2

1

2

1

2

1
PEKE kzzmkyymkxxmE  

i.e.  = 6

Einstein solid

Hence classically,                      for the solid and TNkU B3

Bv 3Nk
T

U
C

V











 (Dulong-Petit law 1822), 

predicts that Cv is independent of T. However, 
experimentally it is found that Cv  0 as T  0.

Einstein (1907): quantize the allowed energies of each 
of the N harmonic oscillators, such that

  , 21 ll

with being the natural frequency of the 
oscillator.

mk
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Einstein solid

Hence, for each oscillator

    









0

B
0

B 21expexp
ll

l TklTkZ  

Define the Einstein temperature BE k 

  

   














0
EE

0
E

exp2exp

21exp

l

l

TlT

TlZ





Summation on RHS is a convergent geometric series, 
first term a = 1, common ratio   .1exp E  Tr 

Einstein solid

The sum tends to  as the number of terms tends 
to  (see, e.g., Stroud Engineering Mathematics 
Programme 13), hence

 ra 1

 
 T

T
Z

E

E

exp1

2exp








Hence (exercise)

  















1exp

1

2

1
3

ln
3

E
EB

2
B T

Nk
T

Z
TNkU




Why factor of ‘3’?
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Einstein solid

Hence (exercise)

  




















1exp

1

2

1

d

d
3

E
EBV TT

Nk
T

U
C

V 


 
  2E

E

2

E
BV

1exp

exp
3










T

T

T
NkC




As T ,                                        hence                   
i.e. tends to the classical result for high T.   

As T  0,

,B3NkCV 

hence                                                   because  

   ,TT EE exp1exp  

    0exp E
2

E  TTCV 
exp(x) diverges more rapidly than xn for any finite n.

  ,TT EE 1exp  

Quantum gases: momentum space

Single particle mass m confined to a cubic container 
(3-D  potential well) side length L.

Describe particle via a wavefunction (x,y,z) satisfying 
the energy eigenvalue equation :-

       zyxEzyxzyxVzyx
zyxm

,,,,,,,,
2 2

2

2

2

2

22























Solutions E and (x,y,z) are the energy eigenvalues and 
stationary states of the particle.

Boundary conditions: 
(0,y,z) = (L,y,z) = (x,0,z) = (x,L,z) = (x,y,0) = 
(x,y,L) = 0
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Quantum gases: momentum space

Solution :-

  





 







 







 


L

z
n

L

y
n

L

x
nAzyx zyxnnn zyx

sinsinsin,,,,

 222
2

2

,, 8 zyxnnn nnn
mL

h
E

zyx


L
np xx





(ditto y,z );   nx = 1, 2, 3 … (ditto ny, nz )

Quantum gases: momentum space

Momentum space picture :-
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Quantum gases: momentum space

Allowed states form a cubic lattice, lattice constant .

Hydrogen atom at room temp confined to 1m3:
L



1242327

B

B

2

smkg107.3300104.1106.12

2

2

 





Tmkp

Tk
m

p

134
34

mskg103
1

310 







L


Compare with

Hence momentum states are very finely spaced  can 
often treat as forming a continuum.

Quantum gases

Gas of N particles in a cubic container, side length L. 

If N/nstates << 1 we have a ‘classical’ gas. 

If N/nstates ~ 1 we have a ‘quantum’ (or ‘quantal’) gas.

Behaviour of a quantum gas is strongly determined by 
the Pauli Exclusion Principle: 

Any number of bosons can occupy a given 
quantum state but only one fermion can 
occupy a given quantum state.

Half-integer spin particles (e.g. e, p, n) are ‘Fermions’. 
Integer-spin particles (e.g. , phonon) are ‘Bosons’. 
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Quantum gases

Consider     , the mean energy of each of the N particles 
in the container: 

nstates  volume of momentum space enclosed by an octant of 
radius  pmean / volume occupied by one state


 

m

p

2

2
mean

3

deBroglie
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3
3
meanstates
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~~ 








 


spacingparticlemeanV

N

n

N

Quantum gases

Hence a gas becomes quantum when the mean inter-
particle spacing becomes comparable with the particles’ 
de Broglie wavelength.

Consider Hydrogen at STP, molar volume 22.410–3 m3. 
Mean spacing = (22.410–3/61023)1/3 = 310–9 m. 
At room temp,  

m1020
300104.1106.12

106.6

22

9

2327

34

B

deBroglie















.

Tmk

h

m

h




Only 1 in 1000 states typically occupied hence it is safe 
to treat as a “classical” gas i.e. rules for filling states are 
unimportant. 
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Quantum gases

Now consider gas of conduction electrons in a metal, 
density typically 1028 m–3.   

m106
300104.1102

106.6 9

2330

34

deBroglie












Hence, conduction electrons form a quantum gas, i.e., 
the rules for filling states are important. Electrons are 
fermions so only one particle can occupy a given 
quantum state.

As T0 the electrons will crowd into the lowest 
available energy level. Unlike a classical ensemble they 
cannot all move into the ground state, because only 
one particle is allowed per state. Instead they will fill all 
available states up to some maximum energy, the 
Fermi energy EF

Mean spacing = (1028)–1/3 = 0.510–9 m.

Fermi gas

As T 0, fermions will fill all available states up to some 
maximum energy EF or equivalently a maximum 
momentum pF, the Fermi momentum. 

Hence number of states contained within an octant of 
momentum space, radius pF = N/2 (because each 
translational momentum state actually comprises TWO 
distinct quantum states, with the electron spin ‘up’ and 
spin ‘down’ respectively).
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Fermi gas

Writing N/V = n, the particle number density,

.
3/222

F
F 8

3

22








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m

h
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p
E

E.g., for the conduction electrons in a metal 

 
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 



FE

Fermi-Dirac distribution 

Equilibrium distribution of energy U over N particles when

a) only ONE particle per state is allowed (c.f. Boltzmann 
distribution, any number of  particles per state were allowed).

b) the particles are indistinguishable (c.f. Boltzmann distribution, 
the particles were distinguishable).

Quantum states form a densely-spaced near-continuum. Divide 
these states into “bands” of nearly identical energy. Hence band i
has a characteristic energy Ei, number of states ωi and holds ni
particles.

Total number of microstates Ωtotal is given by





bandsall

1
total

i
i

where Ωi = the total number of ways to choose 
ni indistinguishable objects from ωi possibilities 
(c.f. coin-flipping).
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Fermi-Dirac distribution

 
 




bandsall

1
total !!

!

i iii

i

nn
Hence

As with the Boltzmann distribution, we obtain the equilibrium 
distribution by seeking the ni’s that maximise ln Ωtotal subject to 
the constraints

UEnNn i
i

i
i

i  


bandsallbandsall

11

Solution (see supplement sheet 4): 

   1exp

1

B 


TkEE

n

Fii

i

 - Fermi-Dirac distribution

Here  EF is a constant (the Fermi Energy).

Bose-Einstein distribution 

Bosons, unlike fermions, are not subject to the Pauli exclusion 
principle: an unlimited number of particles may occupy the same 
state at the same time. This explains why, at low temperatures, 
bosons can behave very differently from fermions; all the 
particles will tend to congregate at the same lowest-energy state, 
forming what is known as a Bose–Einstein condensate.
Bose-Einstein statistics was introduced for photons in 1924 by 
Bose and generalized to atoms by Einstein in 1924-25.

   1exp

1

B 
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TkE
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ii
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
- Bose-Einstein distribution
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Bose-Einstein distribution

 
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
For bosons

As with the Boltzmann and Fermi distributions, we obtain the 
equilibrium distribution by seeking the ni’s that maximise          

ln Ωtotal subject to the constraints
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bandsallbandsall

Classical limit

Fermi-Dirac and Bose-Einstein distributions:

   1exp

1

B 


TkE

n

ii
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
+Fermi-Dirac distribution

- Bose-Einstein distribution

This corresponds to the Boltzmann distribution.

Thus,  .exp B
BB TkE
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