Multiple Integrals

1D integrals. see page 5 of Spiegel.

Doubleintegrals
Sand in abox has height h(x, y).
What is the total volume of sand?

Divide the sand box into boxes of volume
approximately given by

AV =h(x, y, )iy = h(x, y; JpA.
(x,y, ) are the coordinates of the corner of
a particular box.

Then sum the volumes of the small boxes




A sheet has mass m(X,y) per unit area.
What is the mass of the sheet?

Divide the sheet into sguares of mass
approximately equal to AM =m(x,y, JAA.

Then sum over the different squares

S:Zm(x,yj)AA: Zm(&,yj)Axij '

How can we evaluate the sum?

I A &

Y

—X<{ A <
One way isto sum all the elementsfor
which X = x; and obtain the total for a strip
of width Ax;. Next add up the sums for
the different strips,

s:leJZm(x,yj)ij%&-

As Ay. is made infinitessmally small the
summation over j becomes an integral




S= IZ %m(xi , y)dyésxi .

As Ax; 1s made infinitessmally small the
summation over i becomes an integral

ab
S=[m(x, y)dydx
00

We must perform a1l dimensional integral
with respect to y and then a 1 dimensional
Integral with respect to x. Thisisan
Iterated integral.

Notation: The limits written above the
Inner integral sign refer to the inner
differential. i.e. in thiscase 0 and b arethe
limits for the integration with respect to .

Example: evaluate the integrals

ab ba
| =[xe¥dydx and | = [[xe”dxdy
00 00



Choosing the limits

Suppose that the sheet of material is not
rectangular.

In general the limits for the integral with
respect to y depend upon the value of ;.

4 - fu)
L

! Ax; |
1 I A\
> b (3:_
Theintegral iswritten as
b fy(x)
= [ [m(x,y)dydx.
x=a y=f;(x)

Changing the order of integration changes
the limits - divide the region of integration

Into strips to remember how! Then
d (Y
= [ [m(xy)dxdy.
y=c x=g(y)



Changing coordinate system

A rectangular element of areawith sides
Ax. and Ay. Is not the only choice.

What element of area might we use if we
were working in 2D polar coordinates?

Subtracting the areas of sectors from two
concentric circles of radius p and p + Ap.

Ap| 2 5
AA=—F Ap) —m
> _n(p+ p) 0 ]

A [ 2 2 2
== lo* +2p00 +(8p) - p ]
= pApAY
(asif the shaded areais a square of with
sides Ap and pAg)

S0, as Ap and A become infinitesimally
small we write dA=pdodg.
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Example: Use both Cartesian and 2D
polar coordinates to calculate the area of a
circle of radius a.



Double integrals may be written as
[ T dA
B

where [ isthe region of integration.

The value of the integral is independent of
the coordinate system used to evaluate it.

We choose the most convenient coordinate
system - that which allows the integrand or
limits to be written simply.



Example: A disc of radius a centred at

the origin has mass per unit area

m=cya? - x° - y?.

Find the total mass of the disc.



Triplelntegrals
A box of sand could be divided into boxes of
volume AV = AxAyAz

N

The total volume is approximately the sum of
the volumes of all the boxes.
Or if the density of the sand is m(X, Y, z) then

the total mass is approximately
S= Z m(x, y, Z)AV
= Z Z Z m(xi Y1 Z )AzkijAxi
I

As Ax;, Ay, Az, become infinitesimally small
the summations become integrals
abh(x.y)
M=[[ [m(x,y,z)dzdydx = J’J’J’de
00 O
Thefinal expression |satr|ple|ntegral in
which the coordinate system is not specified

but [ isthe volume occupied by the sand.



Example: A sand box has a base

O<x<a, 0=<y<b, z=0.
The height of the sand in the box is

h(x,y)=xy
and its density is
m(x ¥,2) = My(C - 2)

where ¢ and m, are constants.
Find the total mass of sand in the box.
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Changing coordinate system
What element of volume do we use?

Cylindrical polar coordinates :

AV = pApApAz so dV =pdpdedz.
Spherical polar coordinates:

szrzsinBArAcpAH
andso  dV =r?sin6dr dedo.

We use the coordinate system which is
most convenient.
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Example: Use both Cartesian and Sperical
polar coordinates to calculate the volume
of a sphere of radius a.
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Linelntegrals

For a piece of wire we have equations for:
(1) the curve describing its position.

(1) its density at different points.

Could we then find its length and mass?

YA
\%

A

“x

An infinitesmal segment of the curve has
length ds and mass mds where m isthe
mass per unit length. From Pythagoras
Theorem

ds= ((oxf +(eyf

The length ofwire between two points A
and B on the curve isthen given by

L = [ds= [+/(dx)? +(dy)’
C C

where C isthe arc joining Aand B.
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The mass of the wire between Aand B is
M = rm(x,y)ds
C

L and M are given by lineintegrals - 1D
Integrals along a curved path

Example: apiece of wireliesinthe xy
plane and has a shape described by the
equation
y=ax¥? for0< x<h.
The mass per unit length of thewireis
given by
m = CX.
Find the length and mass of the wire.
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The work done by aforce F on aparticle
as It moves through adistance dr isgiven
by dW = F [dlr. The total amount of work
donein moving along acurveCis

W= 1dw
C
= [FLdr

C
= [(Fyi + Fyj + Fok) [oxi + dlyj + dzk)
C
= ‘-[Fldx + F,dy + F3dz]

C
Thisisalineintegral aong acurvein 3

dimensional space.

From a purely mathematical point of view
we may consider integrals of the form

[P(x,y,z)dx + Q(x, Y, z)dy + R(x,y,z)dz
C

In which P, Q and R, have no physical
meaning but these are of less interest to us
here.
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Parameterisation of lineintegrals
Line integrals may be evaluated by
parameterisation (as used for the curved
wirein an earlier example).

ﬁ/
b,

by

ay A

Consider the line integral
| = [F(X,y)ds
C

Transforming ds, the integral becomes

| —j F(x, y(x))El+EdyﬁEde

so that here X 1S the parameter.
Or we could choose y to be the parameter:
1

b, XEZ [P
| = (E(x(y), 17 dy.
r{l (x(y) V)%D +% y
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The position on the path might be
described by a separate parameter such as
thetimet. Theintegral then becomes

| = J’F(x(t) y(t))%gltgF Egi’g@zdt

For mtegrals of the type
| = [[P(x,y)dx +Q(x,y)dy]
C

similar parameterisations can be made:

= [Pl y )+ Qe y(X) .
or 1
- j@v(x(y), y)j—§ * Q) vy
or

= [P GO

dt

We will usually choose the
parameterisation that |eads to the simplest
form for the integrand.
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Example: Evaluate theintegral |xyds
C

where C is the contour made up of straight
line segments joining the points (a,0),
(a,a), and (—a,0).

Example: Evaluate the integral [x“ds
C

where C isasemicircular arc in the upper
half plane, centred on the origin with
radius a. Theintegral isevaluated from
(a,0) to (—a,0).
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Properties (Spiegel, page 151)
[[P(x.y)dx +Q(x,y)dy] =
C

[ P(x,y)dx + J’Q(X, y)dy
C C

2.Reversing the direction of integration
aong C changes the S|gn of the integral.

(a2 bz (al bl

1.

I[Pd“ Qdy] = - I[Pd“ Qdy]
(aly)
3.Lineintegrals may be spllt up
S A _
b |_ 7,\/'V
Jh |
H
(a2,b;)
[[Pdx +Qdy] =
(as,br)
(as.bs) (a2.,)
[[Pdx + Qdy] + I[de + Qdy]
(ay,lr) (as.b3)

Different parameterisations may then be
used for the two parts.

20



4. A lineintegral aroundaclosed curve
has a'sense.

fj N /905}1‘?/& fj/\ /leém[ﬂ/e,

D 1CO

Green's Theorem in the plane

S
ol

Theregion LI isboundd bythe dosead
curve C. Consider the 2D integral

oP
=12 dxd
Bay ™

Inwhich P is me function d x and y.
The aurve C can be broken into two parts
y=fi(X) andy = f,(X) for g < X< a,.
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Integrating first with respect to y the limits

are easily written:
a, f,(x

'dp
| :I I)d—ydydx

 fi (X

= T[P(x, f,(x))-P(x, fl(x))]dx'

This can be split up into line integrals
along the top and bottom parts of C.

| = TP(X, fz(x))dx—T P(x, f,(X))dx

-~ [P0 £, 90 [ P(x, £, 00)cx
= —f Pdx

The circle on the integral sign indicates
that the curveis closed and the integral is
understood to be evaluated in the positive
sense. Our result isthat

Hﬁ—dedy: —§Padx,
0 C

which isone form of Green' stheorem in
the plane.
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Alternatively, for Q, a seondfunction o
x and y, we could integrate w.r.t. x first

and oldain
b, 92

J'g[—dxdy lj'—dxdy

_ E[[Q(g2 (v).v)-Qla.(y) y)ley

by

= 4’ Q(g,(y) y)dy + B[ Q(a,(y) y)dy

= f Qdy

Noticethe sgnisdiff erent! Addingthe
two equations together we obtain:

pQ OJP

Pdx +Od E %d dy
JPa Q)= I ~ oyt
WhICh IS another statement of Green’'s
Theorem in the plane.
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Example: Calculate the area of an ellipse
that has maor axes of length 2a and 2b
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Lineintegralsthat areindependent of path
From Green' s Theorem, if throughout]

(1) f;f(g _0oP
oy
then for any closed curve C in [
(2) §(Pdx +Qdy) = 0.
C

Also if (2) istruefor every closed curvein
[1 then (1) istrue throughout (1. Then:

-:D(Iz)&?_)
[ 27
A ‘\_/E/T—_-;/
cﬁﬂo
f=0=J+]=7]+]
C AED DA AFD DA

andso [ = .
AED AFD

Theintegral from A to D isindependent of
the path and represents the change in a
function Z(x,y) where dZ = Pdx+Qdy.
Equation (1) isjust the condition for this
differential to be exact. e.g. P and Q could
be the x and y components of
a conservative force.
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Surface Integrals

Line integrals along a curve are the
generalisation of a 1D integral.

2D integrals can be generalised to
Integrals over curved surfaces.

Consider a surface S defined by the
equation z=h(x,y). If the mass per unit
surface areais given by m(x,y,z) then
how do we calculate the total mass?

Z/‘\

S can be divided up into elements of area
AS,. If (xp,yp,zp)isapoint on the

element of area then the mass of the
element is approximately
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AM p m(xp’yp’zp)ASp-
So thetotal massis

M = ZAM )= Zm(xp,yp,zp)ASp

Y Y
As AS, ismade infinitessmally small, the

summation tends to the surface integral
M = [fm(x,y, z)dS.
S

S can be projected onto aregion LI in the
xy plane. The vector n, isthe normal to

the surface at agiven point. The area of
the projection of AS, onto the xy planeis

AA, = [cosy |AS,
where y , Is the angle between n|, and the

z axisl.e. cosy, =n, k. Then
M = [fm(x,y,2)dS= [fm(x,y,z)secy|dA
S [

in which z=h(x,y).
Tofind n, and hence |sec | we first find

two vectors parallel to the surface. If we
hold y constant and change x by Ax, then

z will change b EEHAX and so the
g yD&’xu,
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vector x,O,B@HAx lies parallel to the
G E P

surface. Two such unit vectors are
-__1 %.B%HE
u, = 0)
1 ’[ﬁx
e fEf 3t
X[
u, = 1 E),l % E
U
5
oy
The unit vector perpendicular to theseis
T Ly
2 @ ae
o Ty

and so now we may calculate

e

LI ] |

n

cosy,=n [k =

28



The integral then becomes:
M =[rm(x,y,z)dS
S

B Wzt Wz '
—gm(x, Y, z)\/1+ SEWE Eﬁygdxdy

The surface integral has been converted
Into adouble integral over x and y, which
we know how to evaluate.

Example: Evaluate | = ([ x°dS, where S

S
IS the hemisphere defined by

x2+y2+22:a2,220.
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Sometimes it is easier to use a non-
Cartesian coordinate system. But we need
an expression for dS.

For acylindrical surface.
N

dS=pdpdz

dS=r?sin6d6dy
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Example: we will recalculate the integral
from the previous problem using spherical
polar coordinates.

31



Example: Evaluate | = ([ x°dS where Siis
S

now the cylindrical surface defined by
p=a,-b<gz<+h.
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The Dirac Delta Function

If the density of material inavolumeV is
m(x,y, z) then the total massis
M =[mdV.
V

But what is the density of a particle, such
as a eledron,whichis apoint mass?

Consider a‘top hat’ that hasunit area
Nl
—, X—-W<<X< X+WwW

f(x)=Cow'’

0, X<X+w,Xx>X+w

Asw - 0O the‘top hat’ functiontendsto
the Dirac Delta Function, which we write
aso(x — X).

The DiracDelta Function isdefined so as
to have the following poperties

o(x—X)=0for x# X, and
}05(X—X)dX:1

[ F(X)3(x - X)dx = F(X).
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However there is no explicit expression
for the delta function.

Returning to the case of the electron which
has mass M, in a 1D problem, let the

electron be located at x = X. If wewrite
the density as

mM(X) = MaO(X — X)
then thereismassonly at x= X as
required and the total mass IS

+00

M= jmdx Mg jé(x X)dx = Mg

In 3 D, Iif the electron is |ocated at
r =R =(X,Y,Z) then we could write
m(r)=MJo(r —-R)
= MO(x = X)d(y-Y)d(z- 2)

Aganthereismassonly at the point r =R

and the total massis given by
M = ymaVv

= I\/IeJrjoo +J’oo +joo5(x - X)3(y-Y)d(z-Z)dxdydz

—OOOOOO

=M j d(x - X)de o(y- Y)dyj(S(z Z)dz
= Mg



Other Properties
1. O(—X) = d(x)

2 a(x-X)]= I%I 5(x— X)
3 9 500 = -2 5(x)
0)4 X

4. ijooé’(x) f(x)dx =—f'(0)

The top hat is not the only way of
approximating the deltafunction. The
following functions may also be used in
thelimit that n — oo:

5(x) = lim Lﬂ exp(— n2x2) (Gaussian)

—lim_. 1 (Lorentzian)
oK) o {1+ nx?)

5(x):!]imsmn;x
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Example: Evaluate Jf ?3(r =1 AV

wherery =(2,0,1).

Example: Show that
+00
[O'(X)f(xX)dx =-1'(0)
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