
Differential Calculus Problem Set 3

1. Verify Green’s Theorem in the plane for ( ) ( )[ ]∫ −+−
C
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where C  is a rectangle with vertices at −1,−2( ), 1,−2( ), 1,1( ) and −1,1( ).
[15]

2. Determine the surface area of the plane 2x + y + 4z = 16 cut off by (a) x = 0 ,
y = 0, x = 2 , y = 3,  (b) x2 + y2 = 64.  Begin by sketching the surface in
each case.     [6]

3. A sphere of radius a  has its centre at the origin.  The charge per unit area on
the sphere is given by σ = x2 + 2y2 . Find the total charge on the sphere.   [7]
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δ x( ). (Hint: make a Taylor expansion of function f  as a

function of x  about x = 0  and note that 
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∫ dx = 0  since the integrand is

an odd function of x ).      [9]

6. Show that the value of the integral 
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∫ dx  does not depend upon

the value of n .      [4]


