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FOURIER ANALYSIS

(a) Fourier Series

(b) Fourier Transforms

Useful books:

1. “ Advanced Mathematics for Engineers and
Scientists”, Schaum’s Outline Series, M. R.
Spiegel - The course text.  We follow their
notation but do not cover all material.
Worked examples are useful

2. “ Fourier Series”, Library of Mathematics,
RKP, I . N. Sneddon - More formal

3. “ Mathematical Methods for Physicists”,
Arfken - good but more advanced

4. “ Optics”, Hecht and Zajac  - Chapter 7, The
Superposition of Waves

5. “ University Physics”, Young - for
background on Waves and physical
applications
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What is Fourier Analysis and why do we
need it?

In Physics we frequently (have found)/(will find)
that the variation of a quantity in space and time is
described by a sine wave.  We call this a harmonic
variation.

Examples:

• a simple harmonic oscill ator such as a mass on a
string - in fact most systems exhibit simple
harmonic motion for small displacements!

• waves: light, sound, water waves...

• the wave function of a free particle in quantum
mechanics

Also we have seen systems where the principle of
superposition applies: when water waves meet, the
height of the water is given by adding the
amplitudes of the two waves together.

Superposition is obeyed in linear systems i.e. most
of the systems that we will study in physics!

Fourier analysis is about using superposition to
write functions in terms of the sine wave
components that we are famili ar with.
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A Musical Example.

An organ pipe produces a pressure variation
that varies as sinωt .  The frequency is

f = ω
2π

= 262Hz  - middle C on the piano

Sound travels to the ear of a listener who hears
middle C.

One octave corresponds to a doubling of the
frequency.  The frequencies of C, E and G are
in the ratio 3:4:5.

If 3 organ pipes play the chord C, E, G, the
pressure variation is a superposition  of three
waves with different frequencies.  Musical
listeners can hear all three notes.



4

Suppose a physicist builds a device that
produces a train of pressure pulses with
frequency 262 Hz

What does the listener hear now?

We know the ear detects sinusoidal (harmonic)
variations of different frequency and sound
waves obey the superposition principle.

Can we think of the square wave as being made
up of sine waves? What frequencies would
these sine waves have?

Our first guess would be that there must be a
sine wave present that has the same frequency

as the square wave i.e. ω = 2π
262

.



5

If the square wave has maximum and minimum

values of +1 and -1, lets plot it against 
4
π

sinωt

This is a reasonable first approximation but lets

now add 
4

3π
sin3ωt

This looks to be a better approximation and
maybe we can do better still.
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Next we try adding 
4

5π
sin5ωt

If we were to add more sine waves we could
exactly replicate the square wave!

The listener hears a note of “pitch” middle C.
This is the frequency of the lowest frequency
mode.  He also hears a number of “overtones”,
i.e. the other sine wave components, which
determine the quality or “ timbre” of the sound.

How do we know how to choose the
frequencies and amplitudes of the sine waves
that make up the square wave?

To answer this we need Fourier Analysis.
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Periodic Functions

Examples:

The function f (x)   is periodic.  It repeats itself
after a distance T :

f x + T( ) = f x( )  for any x .

T   is the period of the function f (x).  Its
frequency is 1 / T .
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The Fourier Expansion

Let’s consider a function f (x) in the interval
−L, L( ) that has period 2L.

Let us try to build f (x) out of sine and cosine
functions.  We try a form

f x( ) = a0

2
+ an cos

nπx

L
+ bn sin

nπx

L
 
 

 
 

n=1

∞
∑

Note that:

(i) In general we need both sine and cosines -
the musical example was a special case

(ii) We do not yet know the values of the
constants a0, an, and bn.

(iii) The first term 
a0

2
 is independent of x  - it

provides a constant vertical offset.

(iv) The arguments of the sine and cosine have
been carefully chosen so that
f x + 2L( ) = f x( ).

A Fourier expansion of f x( ) can be found as
long as the Dirichlet conditions  are satisfied.
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Dirichlet conditions

(1) f x( ) is well defined and single-valued.

(2) f x( ) is periodic.

(3) f x( ) and ′ f x( ) are continuous except for
finite discontinuities.

The Dirichlet conditions will be satisfied for all
functions that we will consider.  At a
discontinuity the Fourier expansion gives the
average of the value of the function on either
side of the discontinuity

Now let us obtain the values of a0, an, and bn.

Take

f x( ) = a0

2
+ an cos

nπx

L
+ bn sin

nπx

L
 
 

 
 

n=1

∞
∑

and integrate both sides through −L, L( ).  Then
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a0 = 1

L
f x( )

−L

L
∫ dx

a0

2
 is the mean value of f x( ) through −L, L( ).

Next multiply both sides by cos
nπx

L
 and

integrate through −L, L( ).
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an = 1
L

f x( )
−L

L
∫ cos

nπx

L
dx for n =1,2...

Multiply both sides instead by sin
nπx

L
 and

integrate through −L, L( ) to obtain

bn = 1
L

f x( )
−L

L
∫ sin

nπx
L

dx for n = 0,1,2...
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In summary:

f x( ) =
a0

2
+ an cos

nπx

L
+ bn sin

nπx

L
 
 

 
 

n=1

∞
∑

where

an = 1
L

f x( )
−L

L
∫ cos

nπx

L
dx

bn = 1
L

f x( )
−L

L
∫ sin

nπx

L
dx

for n = 0,1,2...

And we have made use of the following results:

cos
nπx

L−L

L
∫ dx = sin

nπx
L−L

L
∫ dx = 0

cos
nπx

L−L

L
∫ cos

mπx
L

dx = Lδm,n

sin
nπx
L−L

L
∫ sin

mπx
L

dx = Lδm,n , m, n =1,2,3...

sin
nπx
L−L

L
∫ cos

mπx
L

dx = 0

where the Kronecker delta has the value

δm,n =1 if m = n, and δm,n = 0 if m ≠ n.
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Similarity to Vectors

In 3 dimensions we find it convenient to use a
set of 3 basis vectors e1, e2 , and e3 from which
we can construct any other vector.

These are mutually orthogonal since

 ei ⋅e j = δ i, j .

We can think of the values of f x( ) for points on
the x  axis in the interval −L, L( ) as the elements
of an infinite vector.

The set of basis functions

 ϕi{ }= 1
2L

,
1
L

cos
nπx
L

,
1
L

sin
nπx
L

  
 

  
 

,

where n =1,2... are orthonormal  since

ϕiϕ jdx
−L

L
∫ = δi, j .

This set of functions can be used to construct
any function that satisfies the Dirichlet
conditions.

Sine and cosine waves are not the only possible
basis functions, but they are probably the most
useful functions for use in physics.
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Example   

Calculate the Fourier coefficients of

f x( ) =
1, 0 < x < L

−1, − L < x < 0
  
 

.

and hence show that

π
4

=1− 1
3

+ 1
5

− 1
7

+ 1
9

− 1
11

+.....
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Notice that in the example since an = 0 there
are no cosine terms in the Fourier expansion.

In this instance f x( ) = − f −x( ) and so f x( ) is
said to be an odd  function.

If instead f x( ) = + f −x( ) then f x( ) is said to be
an even  function.

The Fourier expansion of an odd function is a
sum of sine functions which are themselves odd
functions.

The Fourier expansion of an even function will
be made up from cosine functions which are
themselves even

This is a useful check when calculating Fourier
expansions!
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Example

Expand the function  f (x) = x2 , − L < x < L  in
a full range Fourier series.  Hence show that

π 2

6
=1+ 1

4
+ 1

9
+ 1

16
+.....
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Example

Find the Fourier expansion of the function

f (x) =
cos x x < π

2

0
π
2

≤ x ≤ π

 
 
 

  

in the range −π ≤ x ≤ π .
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Exponential Notation

By writing the cosine and sine terms in terms of
exponentials the Fourier expansion

f x( ) = a0

2
+ an cos

nπx
L

+ bn sin
nπx

L
 
 

 
 n=1

∞
∑

can be rewritten as

f x( ) = cneinπx / L

n=−∞

∞
∑

where

cn = 1
2L

f x( )
−L

L
∫ e−inπx /Ldx
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Truncating the Fourier Series

We may approximate f x( ) by taking only a
finite number of terms in the Fourier series.

Φm = a0

2
+ an cos

nπx
L

+ bn sin
nπx
L

 
 

 
 

n=1

m
∑

The Fourier series converges more slowly in the
vicinity of a discontinuity in f x( ).
Therefore the truncated Fourier series Φm
overshoots near a discontinuity.  This is known
as Gibb’s phenomenon.

Retaining more terms does not remove the
overshoot - rather the overshoot moves closer to
the discontinuity in f x( ).  The reason is that
higher harmonics are required to accurately
reproduce the shape of the discontinuity


