Example: evaluate the integral

$$I = \int_{0.0}^{ab} x e^{\beta y} dy dx$$

Answer: first perform the integral w.r.t. *y* while holding *x* constant

$$I = \int_{0}^{a} \left[\frac{x}{\beta} e^{\beta y} \right]_{0}^{b} dx = \int_{0}^{a} \left[\frac{x}{\beta} \left(e^{\beta b} - 1 \right) \right] dx$$

$$I = \left[\frac{x^2}{2\beta} \left(e^{\beta b} - 1\right)\right]_0^a = \frac{a^2}{2\beta} \left(e^{\beta b} - 1\right)$$

Example: A disc of radius *a* centred at the origin has mass per unit area

$$m = c\sqrt{a^2 - x^2 - y^2}.$$

Find the total mass of the disc.

Answer: The mass is given by

$$M = \iint m \, dA$$

but the density can be written in the form

$$m = c\sqrt{a^2 - \rho^2}$$

and the limits may be more easily written in polar coordinates. We therefore choose to evaluate the mass in polar coordinates

$$M = \int_{\phi=0}^{2\pi} \int_{\rho=0}^{a} c\sqrt{a^2 - \rho^2} \left(\rho d\rho d\phi\right)$$

which we may rewrite in the form

$$M = c \int_{\phi=0}^{2\pi} d\phi \int_{\rho=0}^{a} \rho \sqrt{a^2 - \rho^2} d\rho$$

$$M = c \left[\phi \right]_0^{2\pi} \left[-\frac{1}{3} \left(a^2 - \rho^2 \right)^{\frac{3}{2}} \right]_0^a$$

$$M = 2\pi c \left[+\frac{1}{3} \left(a^2 \right)^{\frac{3}{2}} \right] = \frac{2}{3} \pi c a^3$$

Example: Calculate the area of the *astroid* which is defined by

$$x = a\cos^3 t$$
, $y = a\sin^3 t$ where $0 \le t \le 2\pi$.

Answer: We will use a trick. Green's Theorem lets us write the area as

$$A = \iint dx \, dy = \frac{1}{2} \oint (x \, dy - y \, dx).$$

The line integral is then evaluated by parameterisation

$$A = \frac{1}{2} \int_{0}^{2\pi} \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) dt$$

$$= \frac{3a^{2}}{2} \int_{0}^{2\pi} \left(\cos^{4} t \sin^{2} t + \sin^{4} t \cos^{2} t \right) dt$$

$$A = \frac{3a^{2}}{2} \int_{0}^{2\pi} \cos^{2} t \sin^{2} t dt = \frac{3a^{2}}{8} \int_{0}^{2\pi} \sin^{2} 2t dt$$

$$A = \frac{3a^{2}}{16} \int_{0}^{2\pi} (1 - \cos 4t) dt = \frac{3a^{2}}{16} \left[t - \frac{1}{4} \sin 4t \right]_{0}^{2\pi} = \frac{3a^{2}}{8} \pi$$

Example: we will recalculate the integral from the previous problem (see page 29 of Lecture Notes) using spherical polar coordinates.

$$I = \iint_{S} x^{2} dS = \iint_{S} (a \cos \phi \sin \theta)^{2} a^{2} \sin \theta d\theta d\phi$$

$$= a^{4} \int_{0}^{2\pi} \cos^{2} \phi d\phi \int_{0}^{\pi/2} \sin^{3} \theta d\theta$$

$$I = a^{4} \int_{0}^{2\pi} \frac{1}{2} (1 + \cos 2\phi) d\phi \int_{0}^{\pi/2} \sin \theta (1 - \cos^{2} \theta) d\theta$$

$$I = a^{4} \left[\frac{\phi}{2} \right]_{0}^{2\pi} \left[-\cos \theta + \frac{1}{3} \cos^{3} \theta \right]_{0}^{\pi/2} = \frac{2\pi}{3} a^{4}$$

Example: Evaluate $I = \iint_S x^2 dS$ where *S* is now the cylindrical surface defined by $\rho = a, -b \le z \le +b$.

$$I = \iint_{S} x^{2} dS = \iint_{S} (a \cos \phi)^{2} a d\phi dz = a^{3} \int_{0}^{2\pi} \cos^{2} \phi \int_{-b}^{+b} dz$$

$$I = a^{3} \int_{0}^{2\pi} \frac{1}{2} (1 + \cos 2\phi) d\phi \int_{-b}^{+b} dz$$
$$= \frac{a^{3}}{2} \left[\phi + \frac{1}{2} \sin 2\phi \right]_{0}^{2\pi} [z]_{-b}^{+b} = 2\pi a^{3}b$$

Example: calculate the integral $I = \iint_{\Re} xy \, dA$ where the region \Re is the

quarter circle in the first quadrant with radius a.

Answer: the integrand and the limits of the integral are easily written in polar coordinates and an expression for *dA* was obtained previously, therefore

$$I = \int_{0}^{\pi/2} \int_{0}^{a} (\rho \cos \phi)(\rho \sin \phi) \rho \, d\rho \, d\phi$$

$$I = \int_{0}^{\pi/2} \left(\frac{1}{2}\sin 2\phi\right) d\phi \int_{0}^{a} \rho^{3} d\rho$$

$$I = \left[-\frac{1}{4} \cos 2\phi \right]_0^{\pi/2} \left[\frac{1}{4} \rho^4 \right]_0^a = \frac{a^4}{8}$$

The result is the same as that obtained in the exercise earlier in the lecture using Cartesian coordinates. Notice how the limits are simpler in polar coordinates.

Example: Evaluate the integral

$$I(a) = \int_{-\infty}^{+\infty} \exp(-ax^2) dx$$

We can use a trick by writing

$$[I(a)]^{2} = \left(\int_{-\infty}^{+\infty} \exp(-ax^{2}) dx\right) \left(\int_{-\infty}^{+\infty} \exp(-ay^{2}) dy\right)$$
$$[I(a)]^{2} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp(-a(x^{2} + y^{2})) dx dy.$$

changing to polar coordinates

$$[I(a)]^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} \exp(-a\rho^{2})\rho d\rho d\phi$$

$$[I(a)]^{2} = \int_{0}^{2\pi} \exp(-a\rho^{2})\rho d\rho \int_{0}^{2\pi} d\phi$$

$$[I(a)]^{2} = \left[-\frac{1}{2a}\exp(-a\rho^{2})\right]_{0}^{\infty} [\phi]_{0}^{2\pi}$$

$$[I(a)]^{2} = \frac{1}{2a}2\pi$$

$$I(a) = \left(\frac{\pi}{a}\right)^{\frac{1}{2}}$$