PHYSICS EXAMINATION PROBLEMS SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY

Module Code	PHY3128
Name of module	Electronics for Measurement Systems
Date of examination	June 2003

1. Real op-amp, single pole at ω_0 :

Assume $R_0 \ll R$ and calculate transfer function:

$$V_{\text{out}} = \frac{G[V_X(1+j\omega CR) + V_{\text{in}} + I_XR]}{(1+j\omega/\omega_0)(1+j\omega CR(1+G))}$$

2. At junction between three lines: $R = 16.7\Omega$

Impedance of the lossy line: $\mathbf{Z}_0 = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}}$

Hint: Optimal performance requires an impedance that is independent of frequency, i.e. $G = 4.15 \times 10^{-3} \ \Omega^{-1} \ m^{-1}$

3 (i) At 150 Hz when the noise density is
$$7 \times 10^{-12}$$
 W Hz⁻¹ the rms noise is

$$\frac{4 \times 10^9 \text{ V W}^{-1} \times 7 \times 10^{-12} \text{ W Hz}^{-1}}{10 \text{ s} \times 2\pi \text{ Hz}^{-1} \text{ s}^{-1}} = 0.45 \text{ mV}$$

4. (a)
$$T = 560 \text{ K}, V_0 = 2 \times \sqrt{56 \ \Omega \times P_0} = 7.63 \text{ V} \setminus$$

(b) $V_{\text{out}} = \sqrt{V_0^2 - 4R_0S} \qquad \Delta V_{\text{out}} / \Delta S = 14.7 \text{ V W}^{-1}$